

12 October 2010

Ms. Janine Howard
Environmental Specialist II
Department of Environmental Quality – Piedmont Regional Office
4949-A Cox Road
Glen Allen, VA 23060

Piedmont Regional Office
OCT 1 3 2010
RECEIVER

RE: Renewal Package for VPDES Permit #VA0091456, Iluka Resources - Concord

Ms. Howard:

Attached is the Renewal Package for Iluka Resources Inc. – Concord Mine Concentrator, VPDES Permit #VA0091456.

On Page 2C1 of the instructions for EPA Form 3510-2C, it states that water quality analyses data for samples collected more than three (3) years prior to submission of the Renewal Application can not be used to show pollutants levels. However, the Renewal letter provided by DEQ states that water quality analyses data older than three (3) years may be used if it is still representative of current discharge and pollutant levels. Iluka has chosen to include data older than three (3) years in the Renewal Package because of the ongoing drought conditions in central Virginia and the lack of discharge or overflow at the Concord site for more than seven (7) months. Iluka asserts this data is still representative of the current relevant pollutant levels.

Also, in the instructions for EPA Form 3510-2C, most of the water quality analyses required should be the result of composite type samples. As stated above, the Concord site has not had a discharge or overflow since mid-February resulting in the majority of the sample analyses provided with this Renewal Package being grab type samples. In addition, the water quality samples collected and analyzed more than three (3) years ago were also grab type samples. Iluka asserts this data is still representative of the current relevant pollutant levels.

Should you have any questions or require further information, I may be reached via mobile at 804.721.9613 or via email at jack.rayburn@iluka.com.

Sincerely.

W.T. "Jack" Rayburn

Environment, Health & Safety Supervisor

Iluka Resources Inc. - US Region

5 15 B. COUNTY NAME Sussex County F. COUNTY CODE (if known) C. CITY OR TOWN D. STATE E. ZIP CODE 23882 stony Creek VΑ 6 OCT 13 2010
RECEIVED EPA Form 3510-1 (8-90)

CONTINUE ON REVERSE

	FROM THE FRONT				
VII. SIC COD	ES (4-digit, in order of priority) A. FIRST	<u>-</u>		B. SECOND	
	(Mysterify)Mining Services		(Miceffy) Metal ores,		assified
7 1081	-	7 1099			
15 16 - 19	C. THIRD	15 16 - 1	·1	D. FOURTH	
	(specify)	- <u>-</u>	(specify)	<u></u>	
7		/			
VIII OPERAT	FOR INFORMATION	15 16 - 1	8		
	A.1	NAME			B.Is the name listed in Item
8 Iluka	Resources Inc			1111	VIII-A also the owner?
15 18	- Resources Inc			55	ØYES □NO
	C. STATUS OF OPERATOR (Enter the appropri	ate letter into the answer hore if	Other " specify)	D.	PHONE (area code & no.)
F = FEDERA	<u> </u>	(specify)	Omes, upecays,	c c	
S = STATE	M = PUBLIC (other than federal or st	ate) P		IA I	(434) 348-4300
P = PRIVATI	E O = OTHER (specify)	56		15	6 - 18 19 - 21 22 - 26
	E. STREET OR P.O. BOX	<u></u>			
		1 1 1 1 1 1 1			
12472' S	St. John Church Road				
28			55		
	F. CITY OR TOWN				AN LAND
	Creek		VA 238		cility located on Indian lands?
15 16			40 41 42 47	82 D YES	⊠ NO
	CAR / DOALMENTAL DEDINITO		40 71	- 31	
	ENVIRONMENTAL PERMITS NPDES (Discharges to Surface Water)	D. PSD (Air Emissions from Pr	anased Sources		
C T I	THE DESTRUCTION OF THE COLUMN TWO IS TO SERVICE THE COLUMN TWO IS THE COLUMN TWO IS TO SERVICE THE COLUMN TWO IS THE COLUMN TWO IS THE COLUMN TWO IS TO SERVICE THE COLUMN TWO IS THE COLUMN TWO IS THE COLUMN TWO IS THE COLUMN TWO IS THE COLUMN TWO I			1	
9 N V	A0091456 g P				
15 16 17 18	30 15 16	17 18			
	UIC (Underground Injection of Fluids)	 	E. OTHER (spe		
9 U		ˈˈ VAR051'39'6		Discharges Asso	Permit for Stormwater ciated with Industrial
15 16 17 18		17 16	30	Activity	
	C. RCRA (Hazardous Wastes)		E. OTHER (spe	cify)	
C T		<u>-</u>	1 1 1 1 1	(specify)	
9 R	9				
15 16 17 18 XI. MAP	30 15 16	17 18	30		
	s application a topographic map of the area extending	to at least one mile beyond a	property boundaries. Th	ne man must show	the outline of the facility the
	ach of its existing and proposed intake and discharge st				
injects fluids	underground. Include all springs, rivers, and other surface	e water bodies in the map are	a. See instructions for p	precise requirement	s
XII. NATURE	OF BUSINESS (provide a brief description)				
Iluka Res	ources Inc. leases mining rights in &	Sussex County, VA f	or the pupose o	of mining and	then gravity
	on of mineral sands (titanium-beraing				
	dated ore body situated in the inner boundary between the Coastal Plain a				
The ore i	s then processed at the Concord Conce	entrator Plant using	a variety of w	et gravity s	eparation methods to
produce a	mineral sand concentrate. The conce	entrate is then truc	ked to the Mine	ral Separation	on Plant (MSP)
located i	n Stony Creek, VA for further process	sing.			
1					
1					
1					
1					
VIII OF STIE	CATION (see instructional				
	CATION (see instructions)				
	er penalty of law that I have personally examined and an use persons immediately responsible for obtaining the in				
	at there are significant penalties for submitting false infon				ue, accurate, and complete. I
		B. SIGNATURE			C. DATE SIGNED
	The second control of the second seco	1 ()	IA/I.		=
Matthew	B. Blackwell	MILIAX OI	/// //		10/12/2010
		10000 (C)	<u> </u>	<u></u>	
COMMENTS	FOR OFFICIAL USE ONLY				
			11177	1 1 1 1	
ICI				I	

VPDES Permit Application Addendum

1.	Entity to whom the permit is to be issued:
	o will be legally responsible for the wastewater treatment facilities and compliance with the permit? This may or may be the facility or property owner.
2.	Is this facility located within city or town boundaries? Yes 🔲 No 🖂
3.	Provide the tax map parcel number for the land where the discharge is located
4.	For the facility to be covered by this permit, how many acres will be disturbed during the next
fiv	e years due to new construction activities? 0
5	What is the design average effluent flow of this facility? 2.88 MGD
	For industrial facilities, provide the max. 30-day average production level, include units:
	103.58 Million Gallons per Month
	In addition to the design flow or production level, should the permit be written with limits for any other discharge flow tiers or production levels? Yes No I No I If "Yes", please identify the other flow tiers (in MGD) or production levels:
	ase consider the following questions for both the flow tiers and the production levels (if applicable): Do you plan to and operations during the next five years? Is your facility's design flow considerably greater than your current flow?
6.]	Nature of operations generating wastewater:
Se	ettling of fine solids from the process water which is used in the mineral extraction and separation process.
	85 % of flow from domestic connections/sources
-	Number of private residences to be served by the treatment works: 0
	15 % of flow from non-domestic connections/sources
7.	Mode of discharge: Continuous Intermittent Seasonal Describe frequency and duration of intermittent or seasonal discharges:
	Discharge occurs during large storm and heavy rainfall events
	Identify the characteristics of the receiving stream at the point just above the facility's discharge point:
_	Permanent stream, never dry
_	Intermittent stream, usually flowing, sometimes dry
_	X Ephemeral stream, wet-weather flow, often dry
_	Effluent-dependent stream, usually or always dry without effluent flow
_	Lake or pond at or below the discharge point
_	Other:
	Approval Date(s): O & M Manual Submitted 7/06 Sludge/Solids Management Plan N/A
I	Have there been any changes in your operations or procedures since the above approval dates? Yes 🔲 No 🖂

PUBLIC NOTICE BILLING INFORMATION

I hereby authorize the Department of Envi	ironmental Quality to have the cost of publ	ishing a public
notice billed to the Agent/Department sho	wn below. The public notice will be public	shed once a week
for two consecutive weeks in The Sussex	Surry Dispatch	_ in accordance
with 9 VAC 25-31-290.C.2.		
Agent/Department to be billed:	Environment, Health, and Safety	
Owner:	Iluka Resources Inc	
Agent/Department Address:	12472 St. John Church Road	· · · · · · · · · · · · · · · · · · ·
	Stony Creek, VA 23882	
Agent's Telephone No.:	434.348.4316	
Printed Name:	Kevin Rideout	
Authorizing Agent – Signature:	Willen Doch For D.10	Rideast
Date:	9/24/2010	

VPDES Permit No. VA0091456 Iluka Concord Mine Concentrator EPA I.D. NUMBER (copy from Item 1 of Form 1)

VA0091456

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

Please print or type in the unshaded areas only.

2C SEPA

U.S. ENVIRONMENTAL PROTECTION AGENCY
APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER
EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS
Consolidated Permits Program

I. OUTFA	L LOCATION	1											
For each	outfall, list the	latitude and	longitude of it	s location to	the nearest 1	5 seconds an	nd the name of	f the receiving	water.				
	LL NUMBER	1. DEG.	B. LATITUDE 2. MIN.	3. SEC.	1. DEG.	2. MIN.	DE 3. SEC.	Ī	D. RECEI	VING W	VATER	(name)	
001		36		44	77	35		Unnamed	tributary	y of	Hard	lwood C1	reek
											у.		
-													
												_	
A. Attach labele treatm source B. For ea and st	a line drawing d to correspon ent units, and is of water and ich outfall, pro orm water ru	g showing the nd to the more outfalls. If a d any collecti ovide a descr	e detailed des water balance on or treatme ription of: (1)	hrough the fa scriptions in If e cannot be o nt measures. All operations	icility, Indicate tern B. Constr determined (e s contributing	e sources of in ruct a water b e.g., for certain wastewater	palance on the in mining active to the effluent	line drawing b ities), provide : t, including pro	ributing wastewn by showing avera a pictorial descr ocess wastewate by the wastew	age flow ription of er, sanit	ws betwood the na	veen intakes ature and ar astewater, co	nount of any coling water,
neces	sary.	2 OPEE	RATION(S) CO		G FLOW			_	3, TREAT	MENT		-	
1. OUT- FALL NO. (list)					. AVERAGE F								DES FROM
1	a. Process Wat	OPERATION er	1 (list)	2200 GPI	(include unii M (3,168,000		Gravity Con		RIPTION n Settling For	ids	\longrightarrow	TABL 1-G	E 2C-1 1-υ
[<u> </u>		_	,,		†				\dashv	4-C	
												· ·	
						_							
•													
				+									
			····	-	······································	_							L
													
				 			 				-+	-	
				-							\rightarrow		
				1							$\overline{}$		
						Ÿ							
	_												
						_							
							 				-+		
				+			 				\dashv		_
				+	 .	_	 	_			\dashv		
	_			+-		_					-+		

OFFICIAL USE ONLY (effluent guidelines sub-categories)

C. Except for st			ills are any r	of the d	lischarges de	scribed in	Items II-A or B	intermittent or se	asonal?			
	YES (complete			or the u	ilacrial ges de	35611064 411	NO (go to S		asonar:			
						3. FF	REQUENCY	T		4. FLOW		
		2.00	DEDATION(A)			a. DAYS PE		a FLOW R	ATE (in mgd)		. VOLUME with units)	
1. OUTFALL NUMBER (list)			PERATION(s) IBUTING FLO (list)	w		WEEK (specify average)	b. MONTHS PER YEAR (specify averag	1. LONG TERM		1. LONG TERM AVERAGE		C. DURATION (in days)
1	Process Water						12	1.79 MGD	3.696 MGD	1.79 MGD	3.696 MC	52 52
	uent guideline lii YES (complete	Item 111-1	B)				NO (go to S					
B. Are the limita	itions in the app YES (complete:			eline ex	epressed in te		oduction (or othe NO (go to S	er measure of ope	eration)?			
C. If you answe			<u> </u>	ntity wh	ich represen			t of your level of	production, ex	pressed in the	terms and u	nits used in the
applicable et	ffluent guideline	e, and inc	dicate the af	fected o	outfalls.						1979	
				ľ	E DAILY PR			T, MATERIAL, E	TC .		ECTED OU	
a. QUANTITY	PER DAY b	. UNITS	OF MEASU	IRE		. OFERA	specify)		10.	(6	st outfall num	bers)
			,									
IV. IMPROVEMI												
treatment eq	uipment or prac	ctices or ative or o	any other ei enforcement	nvironn	nental progra	ıms which ıt compliar	may affect the o	in schedule for the discharges descriptors, stipulations, tem IV-B)	bed in this app	lication? This in	cludes, but is	s not limited to,
1. IDENTIFICAT	TION OF COND	DITION,	2. AF	FECTE	D OUTFALL	s	3. BRIE	F DESCRIPTION	OF PROJECT	4. F	INAL COMP	LIANCE DATE
AONE			a. NO.	b. SOU	JRCE OF DISC	CHARGE				a. R	EQUIRED	ь. PROJECTED
construction.	you now have u	underwa	y or which yo	ou plan	. Indicate wh	ether eacl		w underway or p				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

VA0091456

CONTINUED FROM PAGE 2

V. INTAKE AND EFFLUENT CHARACTERISTICS

A, B, & C: See instructions before proce	eding - Complete one set of tables for each	outfall - Annotate the outfall number in the	space provided.
D. Use the space below to list any of the	V-C are included on separate sheets number e pollutants listed in Table 2c-3 of the instru- ou list, briefly describe the reasons you belie	ctions, which you know or have reason to t	pelieve is discharged or may be discharged data in your possession
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
N/A	N/A	N/A	N/A
,			
VI. POTENTIAL DISCHARGES NOT COV		·	
Is any pollutant listed in Item V-C a substa YES (list all such pollutants	ance or a component of a substance which y	ou currently use or manufacture as an inter NO (go to Item VI-B)	mediate or final product or byproduct?

YES (identify the test(s) and de		71	
	escribe their purposes below)	NO (go to Section VIII)	<u> </u>
	·		
	•		
/III. CONTRACT ANALYSIS INFORMATION	4	<u> </u>	
Were any of the analyses reported in Item V	performed by a contract laboratory or consulting	firm?	
YES (list the name, address, an	nd telephone number of, and pollutants analyzed by,	NO (go to Section IX)	
each such laboratory or fit	m below)		
A. NAME	B. ADDRESS	C. TELEPHONE (area code & no.)	D. POLLUTANTS ANALYZED (list)
Painter Tabanahanian Tab	7423 Lee Davis Road	804.559.9004	
Primary Laboratories, Inc	Mechanicsville, VA 23111	004.559.9004	Both Attachment A Sample Rounds, some Quarterly TSS
him Water c Cail Inhountaries	21002 Novth Hamilton Street	804 358 8385	COD BOD TOG GOTTO
	2109A North Hamilton Street Richmond, VA 23230	804.358.8295	COD, BOD, TOC, some Quarterly TSS
		804.358.8295	
Inc	Richmond, VA 23230 2512 West Cary Street	804.358.8295 804.353.6778	
Inc	Richmond, VA 23230		Quarterly TSS
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court		Quarterly TSS Some Quarterly TSS Whole Effluent
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220	804.353.6778	Quarterly TSS Some Quarterly TSS
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Inc Schneider Laboratories, Inc Coastal Bioanalysts	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court	804.353.6778	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during
Air, Water, & Soil Laboratories, Inc Schneider Laboratories, Inc Coastal Bioanalysts	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061	804.353.6778 804.694.8285	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
Inc Schneider Laboratories, Inc Coastal Bioanalysts X. CERTIFICATION I certify under penalty of law that this docum	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061	804.353.6778 804.694.8285	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
Inc Schneider Laboratories, Inc Coastal Bioanalysts X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidirectly responsible for gathering the inform.	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061 ment and all attachments were prepared under maluate the information submitted. Based on my ation, the information submitted is, to the best of	y direction or supervision in accordaninquiry of the person or persons whimy knowledge and belief, true, accur	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
Schneider Laboratories, Inc Coastal Bioanalysts X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidirectly responsible for gathering the informare significant penalties for submitting false	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061	y direction or supervision in accordaninquiry of the person or persons whimy knowledge and belief, true, accur	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
Inc Schneider Laboratories, Inc Coastal Bioanalysts X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidirectly responsible for gathering the informare significant penalties for submitting false	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061 ment and all attachments were prepared under maluate the information submitted. Based on my ation, the information submitted is, to the best of	y direction or supervision in accordaninquiry of the person or persons whimy knowledge and belief, true, accur	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidinectly responsible for gathering the informare significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print)	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061 ment and all attachments were prepared under maluate the information submitted. Based on my ation, the information submitted is, to the best of information, including the possibility of fine and information.	y direction or supervision in accordant inquiry of the person or persons which my knowledge and belief, true, accumprisonment for knowing violations.	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidirectly responsible for gathering the informare significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print) Villiam T. Rayburn, EHS Super	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061 ment and all attachments were prepared under maluate the information submitted. Based on my ation, the information submitted is, to the best of information, including the possibility of fine and invisor	y direction or supervision in accordan- inquiry of the person or persons wh my knowledge and belief, true, accur mprisonment for knowing violations. B. PHONE NO. (area code & no.) (434) 348-4300 D. DATE SIGNED	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit
X. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and evidinectly responsible for gathering the informare significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print)	Richmond, VA 23230 2512 West Cary Street Richmond, VA 23220 6400 Enterprise Court Gloucester, VA 23061 ment and all attachments were prepared under maluate the information submitted. Based on my ation, the information submitted is, to the best of information, including the possibility of fine and information.	y direction or supervision in accordan- inquiry of the person or persons wh my knowledge and belief, true, accur mprisonment for knowing violations. B. PHONE NO. (area code & no.) (434) 348-4300 D. DATE SIGNED	Quarterly TSS Some Quarterly TSS Whole Effluent Toxicity.(Collected during the 1st year of the permit

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1)
VA0091456

SEE INSTRUCTION	TAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C,						VA009145	ь						
V. INTAKE AND	EFFLUEN	IT CHARAC	TERISTICS (contin	nued from page 3 o	of Form 2-C)								OUTFALL NO	
PART A -You m	ust provide	the results	of at least one ana	lysis for every pol	lutant in this table	a. Complete on	e table for each out	fall. See instr	uctions for ad	ditional details.				
					2. EFFLU	ENT				3. UN (specify i)			I. INTAKE	
		a. MAXIMU	M DAILY VALUE		30 DAY VALUE iilable)	c. LON	G TERM AVRG. VA (if available)	ALUE				a, LONG T AVERAGE V		
1. POLLUTA	NT C	(1) ONCENTRAT	TION (2) MASS	(1) CONCENTRATION	N (2) MASS	(1) CONCE	NTRATION (2) MASS	d. NO. OF ANALYSES	a, CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSE
a. Biochemical C Demand (BOD)	Эхудеп	<2							1	mg/L				
b. Chemical Oxy Demand (COD)	gen	<10							1	mg/L		-		
c. Total Organic (TOC)	Carbon	1.2							1	mg/L				
d. Total Suspend Solids (TSS)	ded	39.0				14.	46		12	mg/L				
e. Ammonia (as i	N)	0.06				0.	04		2	mg/L				
f. Flow	V	ALUE 10	0.080	VALUE		VALUE	2.366		12	MGD		VALUE .		
g. Temperature (winter)		ALUE	20.7	VALUE	VALUE		10.0		17	°c		VALUE		
h. Temperature (summer)	v	ALUE	 27. 7	VALUE		VALUE	27.7		2	°C	:	VALUE		
i. pH	N	11NIMUM 4.86	MAXIMUM 8.89	MINIMUM	MAXIMUM				22	STANDAR	D UNITS			
direc	ctly, or ind ntitative da	irectly but e ta or an exp	xpressly, in an effl	uent limitations gr	uideline, you mu charge. Complete	st provide the one table for		one analysis	for that pollut	ant. For other p details and requ	ollutants for irements.	olumn 2a for any poll which you mark col	lumn 2a, you	must provide
1. POLLUTANT	2. MA	RK "X"			b. MAXIMUM 30	. EFFLUENT	c. LONG TERM A	VPG VALUE	= 1	4.	UNITS	a, LONG TERN	TAKE (option	nal)
AND CAS NO.	a. 8ELIÉVED	b. BELIEVED	a. MAXIMUM D	AILY VALUE	(if availa		(if availe		d. NO. O	F a. CONCE	. _{N-}	VALU		b. NO. OF
(if available)	PRESENT		(1) CONCENTRATION	(2) MASS C	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSE			S CONCENTRATION	N (2) MASS	ANALYSE
a. Bromide (24959-67-9)		L X									_		_	
b. Chlorine, Total Residual	X		0.07			,			2	mg/L		ü		
c. Color		$\mid \times \mid$						Į						
d. Fecal Coliform	X		2						1	mpn				
e. Fluoride (16984-48-8)		X												
f. Nitrate-Nitrite (as N)	_	X												

ITEM V-B CONT			I			EEC UEVE		···		T -:			A165 /	
1. POLLUTANT	2. MAI	RK "X"				EFFLUENT	T		,	4. UNI	rs	5. INT.	AKE (optiona	il)
AND CAS NO.	a.	b.	a. MAXIMUM DA	NLY VALUE	b. MAXIMUM 30 (if availa	DAY VALUE	c. LONG TERM A (if availa		d. NO. OF	a. CONCEN-		a. LONG TI AVERAGE V	ERM 'ALUE	b. NO. OF
(if available)	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS_	ANALYSES
g. Nitrogen, Total Organic (<i>as</i> N)		X						_					_	
h. Oil and Grease		X					; <u> </u>							
i. Phosphorus (as P), Total (7723-14-0)		X												
j. Radioactivity														
(1) Alpha, Total	X		1.3				0.65		2	pCi/l				
(2) Beta, Total	X		46.3			-	24.4		2	pCi/l				
(3) Radium, Total		X												
(4) Radium 226, Total	X		0.20						1	pCi/l				
k. Sulfate (as SO ₄) (14808-79-8)		X						~						
I. Sulfide (as S)		X												
m. Sulfite (as SO ₃) (14265-45-3)		X												
n. Surfactants		X	:									_		
o. Aluminum, Total (7429-90-5)		X		1										
p. Barium, Total (7440-39-3)		X												
q. Boron, Total (7440-42-8)		X				-								
r. Cobalt, Total (7440-48-4)		X												
s. Iron, Total (7439-89-6)		X												
t. Magnesium, Total (7439-95-4)		X					_							
u. Molybdenum, Total (7439-98-7)		X												
v. Manganese, Total (7439-96-5)		X												
w. Tin, Total (7440-31-5)		X												
x. Titanium, Total (7440-32-6)		X												

EPA I.D. NUMBER (copy from Item 1 of Form 1)	OUTFALL NUMBER
VA0091456	001

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitritle, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

addition	al details ar	nd requireme	ents												
		2. MARK "X"	*				FFLUENT				4. UN	ITS		KE (optional	/)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 E (if availab	DAY VALUE ele)	c. LONG TERM VALUE (<i>if ava</i>	iiluble)		CONSEN		a. LONG TI AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDI	E, AND TO	TAL PHENO	LS												
1M. Antimony, Total (7440-36-0)	X			<0.0014				"		2	mg/L				
2M. Arsenic, Total (7440-38-2)	X			<0.001						2	mg/L				
3M. Beryllium, Total (7440-41-7)	X			0.0003						1	mg/L				
4M. Cadmium, Total (7440-43-9)	X			<0.003						2	mg/L				
5M. Chromium, Total (7440-47-3)	X			<0.0016						2	mg/L				
6M. Copper, Total (7440-50-8)	X			<0.0005						2	mg/L				
7M. Lead, Total (7439-92-1)	X			<0.0005			-			2	mg/L				
8M. Mercury, Total (7439-97-6)	X			<0.0002			<u></u>		-	2	mg/L				
9M. Nickel, Total (7440-02-0)	X			<0.00094						2	mg/L		,		
10M. Selenium, Total (7782-49-2)	X			<0.002						2	mg/L	·			
11M. Silver, Total (7440-22-4)	X			<0.0002						2	mg/L				
12M. Thallium, Total (7440-28-0)	X			0.002						2	mg/L				
13M. Zinc, Total (7440-66-6)	X			<0.0036						2	mg/L				
14M. Cyanide, Total (57-12-5)	X			<0.010						2	mg/L				
15M. Phenols, Total	X			<10						2	ug/L				
DIOXIN															
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			X	DESCRIBE RESU	ILTS		-	***************************************			-				

CONTINUED FROM THE FRONT

	VI THE FRO	. MARK "X"			3. EFFLUENT								5. INTAKE (optional		r)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (if ava					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- VOLATIL	E COMPOL	JNDS											*	
1V. Accrolein (107-02-8)	X			<5						2	ug/L			-	
2V. Acrylonitrile (107-13-1)	X			<5	_					2	ug/L				
3V. Benzene (71-43-2)	X			<5						2	ug/L				
4V. Bis (<i>Chloro-methyl</i>) Ether (542-88-1)	X			<10						2	ug/L				
5V. Bromoform (75-25-2)	X			<5						2	ug/L				
6V. Carbon Tetrachloride (56-23-5)	X			<5	_					2	ug/L				
7V. Chlorobenzene (108-90-7)	X			<5			-			2	ug/L				
8V. Chlorodi- bromomethane (124-48-1)	X			<5						2	ug/L				
9V. Chloroethane (75-00-3)	X			<10			_			1	ug/L				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	×			<10						1	ug/L				
11V. Chloroform (67-66-3)	X			<5						2	ug/L				
12V. Dichloro- bromornethane (75-27-4)	X			<5				_		2	ug/L				
13V. Dichloro- difluoromethane (75-71-8)	X		_	<1						1	ug/L	l			
14V. 1,1-Dichloro- ethane (75-34-3)	X			<5						1	ug/L				
15V. 1,2-Dichloro- ethane (107-06-2)	X			~ 5						1	ug/L				
16V, 1,1-Dichloro- ethylene (75-35-4)	X			<5						1	ug/L				
17V. 1,2-Dichloro- propane (78-87-5)	X			<5						2	ug/L				
18V. 1,3-Dichloro- propylene (542-75-6)	X		,	<10						1	ug/L				
19V. Ethylbenzene (100-41-4)	X			<5						2	ug/L				
20V. Methyl Bromide (74-83-9)	X			<5						2	ug/L				
21V. Methyl Chloride (74-87-3)	X			<5						1	ug/L				

CONTINUED FROM PAGE V-4

	VI PAGE V-2	2. MARK "X"	,	*			FFLUENT			-	4. UN	ITS	5. INTA	KE (optiona	<i>n</i>
1. POLLUTANT AND	a.	b.	С.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 I (if availai		c. LONG TERM VALUE (if ava					a. LONG TI AVERAGE V		
CAS NUMBER (if available)	TESTING	BELIEVED PRESENT	BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b, NO. OF ANALYSES
GC/MS FRACTION	- VOLATIL	E COMPOL	JNDS (cont	inued)		_									
22V. Methylene Chloride (75-09-2)	X			< 5						1	ug/L				
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	X			<5						2	ug/L				
24V. Tetrachloro- ethylene (127-18-4)	X			<5						1	ug/L				
25V. Toluene (108-88-3)	X			<5				1	-	2	ug/L				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	X			<5						1	ug/L				
27V. 1,1,1-Trichloro- ethane (71-55-6)	X			<10						1	ug/L				
28V. 1,1,2-Trichloro- ethane (79-00-5)	X			<5						2	ug/L				
29V Trichloro- ethylene (79-01-6)	X			<5						1	ug/L				
30V. Trichloro- fluoromethane (75-69-4)	X			<10				_		1	ug/L				
31V. Vinyl Chloride (75-01-4)	X			<5				-		1	ug/L				
GC/MS FRACTION	- ACID CC	OMPOUNDS	3							•			<u> </u>		
1A. 2-Chlorophenol (95-57-8)	X			<10			1			2	ug/L			l	
2A. 2,4-Dichlero- phenol (120-83-2)	X			<10						2	ug/L				
3A. 2,4-Dimethyl- phenol (105-67-9)	X			<10						2	ug/L				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	X			<50						1	ug/L				
5A. 2,4-Dinitro- phenol (51-28-5)	X			<10						2	ug/L				
6A. 2-Nitrophenoi (88-75-5)	X			<1		i i			ľ	1	ug/L				
7A. 4-Nitrophenol (100-02-7)	X			<50						1	ug/L				
8A. P-Chloro-M- Cresol (59-50-7)	X			<10						1	ug/L				
9A. Pentachloro- phenol (87-86-5)	X			<10						2	ug/L	**-			
10A. Phenol (108-95-2)	X			<10						2	ug/L				
11A. 2,4,6-Trichloro- phenol (88-05-2)	X			<10						2	ug/L				

CONTINUED FROM THE FRONT

	I THE FRO	MARK "X"					FFLUENT		 	4. UN	ITS		KE (optiona	<i>l</i>)
1. POLLUTANT AND	a.	b.	С.	a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 30 I		c. LONG TERM VALUE (if ava			-	a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	b. BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	- BASE/NE	UTRAL CO							•			·		
1B. Acenaphthene (83-32-9)	X			<10					2	ug/L	_			
2B. Acenaphtylene (208-96-8)	X			<10					1	ug/L				
3B. Anthracene (120-12-7)	X			<10					2	ug/L				
4B. Benzidine (92-87-5)	X			<10					 2	ug/L				
5B. Benzo (a) Anthracene (56-55-3)	X			<10					2	ug/L				
6B. Benzo (a) Pyrene (50-32-8)	X			<10					2	ug/L				
7B. 3,4-Benzo- fluoranthene (205-99-2)	×		;	<10					1	ug/L				
8B. Benzo (ghi) Perylene (191-24-2)	X			<10	_				1	ug/L				
9B. Benzo (k) Fluoranthene (207-08-9)	X			<10	-				2	ug/L				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	X			<10					1	ug/L				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	×			<10	1				2	ug/L				
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	X			<10					2	ug/L				
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	X			<10					1	ug/L				
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	X			<10					1	ug/L				
15B. Butyl Benzyl Phthalate (85-68-7)	X			<10					 2	ug/L				
16B. 2-Chloro- naphthalene (91-58-7)	×			<10					2	ug/L				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	X			<10					1	ug/L				
18B. Chrysene (218-01-9)	X			<10					2	ug/L				
19B. Dibenzo (a,h) Anthracene (53-70-3)	X			<10					2	ug/L				
20B. 1,2-Dichloro- benzene (95-50-1)	X			<10					1	ug/L				
21B. 1,3-Di-chloro- benzene (541-73-1)	X			<10					1	ug/L				

CONTINUED FROM PAGE V-6

	M PAGE V-6	2. MARK "X"	•	<u> </u>		3. É	FFLUENT				4. UN	its	5. INTA	KE (optiona	<i>l</i>)
1. POLLUTANT AND				a. MAXIMUM DAI	I V VALUE	b. MAXIMUM 30 ((if availai	DAY VALUE	c. LONG TERM VALUE (if ava					a. LONG T AVERAGE V	ERM	
OAGAII MADED	a. TESTING REQUIRED	b. BELIEVED PRESENT	c. BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	, , , , , , , , , , , , , , , , , , ,	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	I – BASE/N	EUTRAL CO	OMPOUND	S (continued)										_	
22B. 1,4-Dichloro- benzene (106-46-7)	X			<10						· 1	ug/L				
23B. 3,3-Dichloro- benzidine (91-94-1)	X			<10						2	ug/L				
24B. Diethyl Phthalate (84-66-2)	X			<10						2	ug/L				
25B. Dimethyl Phthalate (131 -11-3)	X			<10						2	ug/L				
26B. Di-N-Butyl Phthalate (84-74-2)	X			<10						2	ug/L				
27B. 2,4-Dinitro- toluene (121-14-2)	X			<10						2	ug/L				
28B. 2,6-Dinitro- toluene (606-20-2)	X			<10						1	ug/L				
29B. Di-N-Octyl Phthalate (117-84-0)	X			<10						1	ug/L	<u>.</u>			
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	X			<10						2	ug/L				
31B. Fluoranthene (206-44-0)	X			<10						2	ug/L				
32B, Fluorene (86-73-7)	X			<10						2	ug/L				
33B. Hexachloro- benzene (118-74-1)	X			<10				<u> </u>		2	ug/L				
34B. Hexachloro- butadiene (87-68-3)	X			<10					=	2	ug/L				
35B. Hexachloro- cyclopentadiene (77-47-4)	X	_		<10						2	ug/L			1	
36B Hexachloro- ethane (67-72-1)	X			<10						2	ug/L				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	X			<10						2	ug/L				
38B. Isophorone (78-59-1)	X			<10						2	ug/L				
39B. Naphthalene (91-20-3)	X			<10						1	ug/L				
40B. Nitrobenzene (98-95-3)	X			<10						2	ug/L				
41B. N-Nitro- sodimethylamine (62-75-9)	X		,	<10						2	ug/L				
42B. N-Nitrosodi- N-Propylamine (621-64-7)	X			<10						2	ug/L				

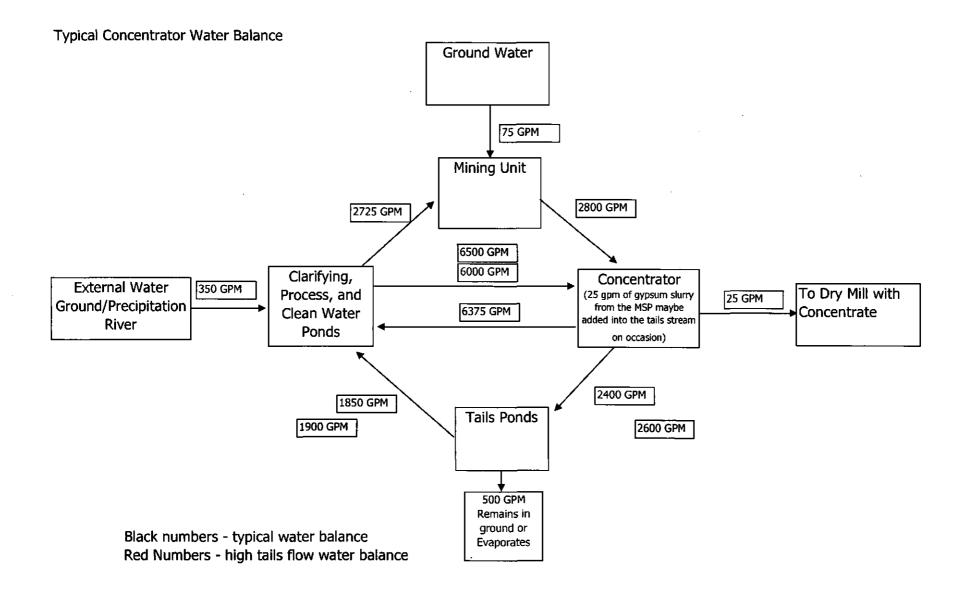
CONTINUED FROM THE FRONT

	QUIRED		c. BELIEVED ABSENT	a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 30 D	AY VALUE	c. LONG TERM	ANDC				a, LONG Ti	-RM	
(if available) RE GC/MS FRACTION – E 43B. N-Nitro-	ESTING QUIRED	BELIEVED PRESENT	BELIEVED	. (1)		(if availat	ile)	VALUE (if ava	ilable)				AVERAGE V	ALUE	
GC/MS FRACTION - E				CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
	\overline{X}		MPOUNDS		(E) William	oo.toc.tt.jotto.tt	(2) (1)	GONO ENTITION	(2) 113 (30		<u>-</u>		TOOKOEKIII OKKOII	(2) 113100	-
(86-30-6)	•			<10						2	ug/L				
44B. Phenanthrene (85-01-8)	X			<10					1	1	ug/L			-	
45B. Pyrene (129-00-0)	\times			<10						2	ug/L				
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	X			<10				:		2	ug/L				
GC/MS FRACTION - I	PESTICI	DES													
1P. Aldrin (309-00-2)	X			<0.05						2	ug/L				
2P. α-BHC (319-84-6)	\times			<0.05						2	ug/L				
3P. β-BHC (319-85-7)	X			<0.05						2	ug/L	<u></u>			
4P. γ-BHC (58-89-9)	X			<0.05						1	ug/L				
5P, δ-BHC (319-86-8)	X			<0.05						1	ug/L				
6P. Chlordane (57-74-9)	X			<0.20						2	ug/L				
7P. 4,4'-DDT (50-29-3)	\times			<0.10	L				L	2	ug/L				
8P. 4,4'-DDE (72-55-9)	X			<0.10						2	ug/L				
9P. 4,4'-DDD (72-54-8)	X			<0.10						2	ug/L				
10P. Dieldrin (60-57-1)	X			<0.10						2	ug/L				
11P. α-Engsulfan (115-29-7)	\times			<0.1						1	ug/L				
12P. β-Endosulfan (115-29-7)	X			<0.04						1	ug/L				
13P. Endosulfan Sulfate (1031-07-8)	X			<0.10						. 2	ug/L				
14P. Endrin (72-20-8)	X			<0.10						2	ug/L				
15P. Endrin Aldehyde (7421-93-4)	X			<0.10						2	ug/L				
16P. Heptachlor (76-44-8)	X			<0.10						2	ug/L				

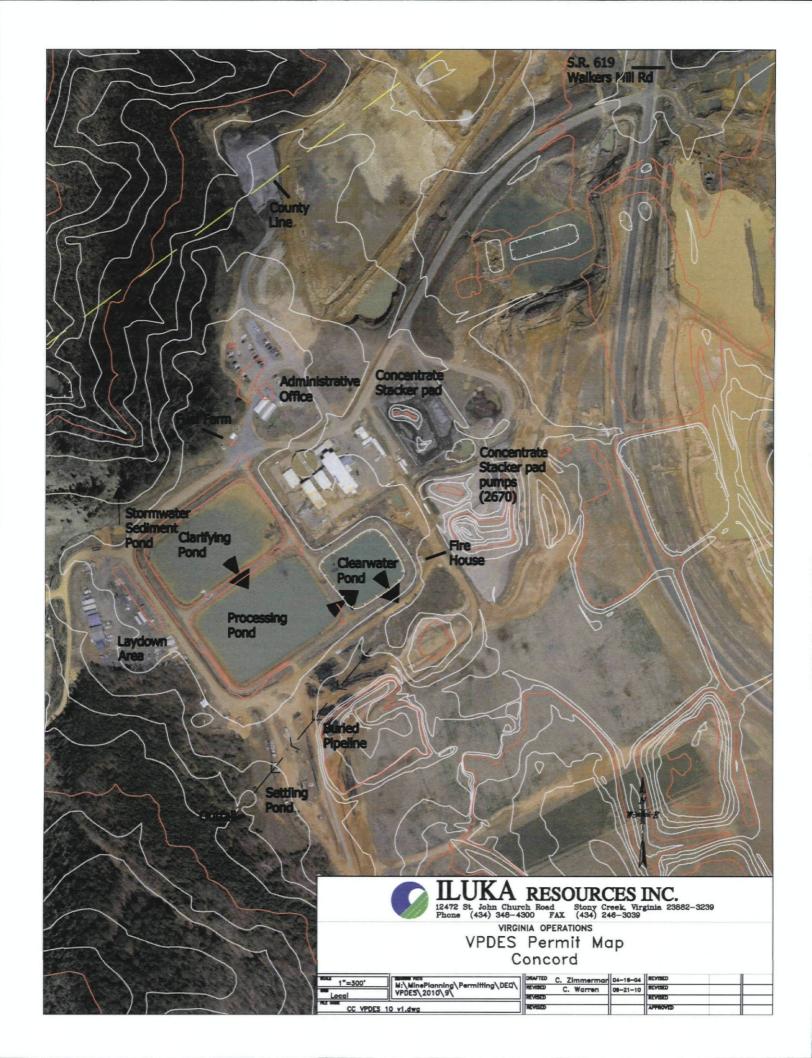
EPAI.D. NUMBER (copy from liem 1 of Form 1)

VA0091456

OUTFALL NUMBER


001

CONTINUED FROM PAGE V-8


Tool William Co.		. MARK "X	,			3. E	FFLUENT	1	· · · · · · · · · · · · · · · · · · ·	•	4, UNI	ITS	5. INTA	KE (optiona	7)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 I (if availa	DAY VALUE	c. LONG TERM VALUE (if ava		1 NO 05			a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)		BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	1	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	I – PESTICI	DES (contin	ued)												
17P. Heptachlor Epoxide (1024-57-3)	X			<0.10						2	ug/L				
18P. PCB-1242 (53469-21-9)	X			<1.0						2	ug/L				
19P. PCB-1254 (11097-69-1)	X			<1.0						2	ug/L				
20P. PCB-1221 (11104-28-2)	X			<1.0						2	ug/L				
21P, PCB-1232 (11141-16-5)	X			<1.0						2	ug/L				
22P. PCB-1248 (12672-29-6)	X			<1.0						2	ug/L				
23P. PCB-1260 (11096-82-5)	X			<1.0						2	ug/L				
24P. PCB-1016 (12674-11-2)	X			<1.0	_					2	ug/L				
25P. Toxaphene (8001-35-2)	X			<5.0						2	ug/L				

EPA Form 3510-2C (8-90)

PAGE V-9

Certificate of Analysis

Final Report

Laboratory Order ID 10090323

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

September 17, 2010

Date Issued:

September 27, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

-Analytical Results -

Sample I.D.: Concord Process Water

Laboratory Sample I.D.: 10090323-001

•			•	•	
Date/Time Sampled: 09/16	/10 11:08			Analysis	
Parameter	Method	Sample Results	Qual Rep Limi	Date/Time	Analyst
Beryllium	EPA200.9/R2.2	0.0003 mg/L	0.0003	09/23/10 16:36	WBP
Dichlorodifluoromethane	SW8260B	< 1 ug/L	1	09/24/10 0:17	DMB
Chloroethane	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
Trichlorofluoromethane	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
1,1,1-Trichloroethane	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
2-Chioroethyl vinyl ether	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
cis-1,3-Dichloropropene	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
trans-1,3-Dichloropropene	EPA624	< 10 ug/L	10	09/24/10 3:42	DMB
Endosulfan I	EPA608	< 0.1 ug/L	0.1	09/23/10 5:55	SKS
Endosulfan II	EPA608	< 0.04 ug/L	0.04	09/23/10 5:55	SKS
-4-Chloro-3-methylphenol	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
~ 4,6-Dinitro-2-methylphenol	EPA625	< 50 ug/L	50	09/22/10 19:32	JHV
2-Nitrophenol	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
4-Nitrophenol	EPA625	< 50 ug/L	50	09/22/10 19:32	JHV
Acenaphthylene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
Benzo (b) fluoranthene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
Benzo (g,h,i) perylene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
4-Bromophenyl phenyl ether	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
bis (2-Chloroethoxy) methane	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
4-Chlorophenyl phenyl ether	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
2,6-Dinitrotoluene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
Di-n-octyl phthalate	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
bis (2-Ethylhexyl) phthalate	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
Naphthalene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV
Phenanthrene	EPA625	< 10 ug/L	10	09/22/10 19:32	JHV

Certificate of Analysis

Final Report

Laboratory Order ID 10090323

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

September 17, 2010

Date Issued:

September 27, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

−Anaiytical Results -

Sample I.D.: Concord Process Water

Date/Time Sampled: 09/16/10 11:08

Laboratory Sample I.D.: 10090323-001

Analysis

Parameter

Method

Sample Results

Qual Rep Limi

Date/Time Analyst

Summary of Analytical QC Batches

QC Batch ID	Method	Sample List
QC100923041	EPA625	10090323-001
<u>QC I</u>	<u>Parameter</u>	Qualifier Comments
LCSD	4-Chloro-3-methylphenol	P
LCSD	4-Nitrophenol	P
MSD	4-Chloro-3-methylphenol	P
MSD	4-Nitrophenol	P
QC100924002	EPA200.9/R2.2	10090323-001
QC100924008	EPA608	10090323-001
QC100924024	EPA624	10090323-001
QC100927021	SW8260B	10090323-001

-Qualifier Definations -

Qualifier Description

Р Duplicate analysis does not meet the acceptance criteria for precision

LABORAT	DRIES, INC	3.				C	HA	IN	OF	CU	STO	YOC							PAGE	0)F
IENT NAME: I luka	Reso	urc es	5 In	C							PI	ROJ	ECT N	AME:	Con	ord	PRI	00 <i>e</i> s	5μ a	fer	
IENT CONTACT: Kevi	n Rid	eout	}									TE N	NAME:		ع م م	ord					}
IENT ADDRESS: (247)	a st.	John	Chi	irch	Rog	cl	3	10/15 V/	23	882 1882	PI	ROJ	ECT N	JMBE						_	
LIENT PHONE NUMBER: (434,3											.O. N	IUMBE	R: L	D-	9219	19				
JENT FAX NUMBER: 나ろ나	.246.3	039	EMAIL:	Kevin	ride	المين	Qi.	luk	a.c.	om	R	EGU	LATOF	TUA YS	HORIT	Y: [EQ				
sample for compliance repo	rting? (Y				ls samp				•			oly?	YES	S (NC	\supset	PWS I	.D. #:				
AMPLER NAME (PRINT):	Kevir	<u> </u>	deou	Ð	SAMPL	ER S	SIGN	ΙΑΤι			Ux	η	Rial	لصنة	ð	Turn /	Around	Time:		<i>O</i> Da	ıy(s)
ve ammonia and TKN samples been ver	rified to be dec	chlorinated a	at the time of	sampling?:	YES	NO		↓_	N	IATF	₹IX			ANA	LYSIS	/ (PRES	SERVA	TIVE)	,	COMM	IENTS
CLIENT SAMPLE I.D.	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Number of Containers	Grab	Composite Field Eiltered (Discolved Metals)	Ground Water / Surface Water	-	Drinking Water	Solide	Other	7 0	he o	inal Linal	10 ,		tac	トカト	PRESERVA	E NOTE ATIVE(S) or TE (L/mln)
Concord Vexcessiving			9/14/10	11:08	7	4	\perp	\bot	$ \checkmark $	\dashv	-↓-	_	_	1	1	~	~	1	1		
								+		_	4		ļ	<u> </u>							
NQUISHED: NOVIN RULLOUT NOVISHED:	DATE /	0 14347	RECEIVED:		ACR	ext	9/10	I I I	TIME 14 TIME	347	Lev	eli elli	ا م	ĺ	JSE ON ka	ILY		1009	R TEMP		/ ; Ge
Noulsheb:	DATE /		RECEIVED:				D/	TE /					<u>D</u>		131			DUE: Recd:	5 Days 09/17/10	J80819	xis

Sample Condition Form#: F1302 Rev. #: 1.0 Effective: August 2, 2010 Page 1 of 1

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358

10090323

7/10

	Sample Conditions Checklist		DUE: 5 D Recd: 09/17
Open	ed by: (Initials) Lab ID No.: Date Cooler Opened:	9/13/10	-
1.	How were samples received? Fed Ex UPS Courier Walk In	YES NO	N/A
2.	Were custody seals used?		
3.	If yes, are custody seals unbroken and intact at the date and time of arrival?		
4.	Are the custody papers filled out completely and correctly?	0	
5.	Do all bottle labels agree with custody papers?		
6.	Are the samples received on ice?		
7.	Is the temperature blank or representative sample within acceptable limits? (above freezing to 6°C)		
8.	Are all samples within holding time for requested laboratory tests?	d o	
9	Is a sufficient amount of sample provided to perform the tests indicated?		
10	Are all samples in proper containers for the analyses requested?		
11	Are all samples appropriately preserved for the analyses requested?	囡,口	
12	Are all volatile organic containers free of headspace?	á o	
	<u>COMMENTS</u>		

pH Preservation Log

pH Log Form #: F1301

Effective: August 2, 2010

Page 1 of 1

Date Performed:	/	117	(()

Analyst Performing Check:

	a		Meta	s		yani	de		Sulfic		Α	mmo	nia		TKN		P	nos,	Tot	N	O3+N	102		DRC							
	Container ID		l as eived	al pH Idjust.)	P Ret	H as selved Other	Finat pH (if adjust.)	Rec	H as elved	Final pH (if adjust.)	P Rec	H as ceived	Final pH (if adjust.)	p Re	H as celved	Final pH (If adjust.)	Rec	H as elved	Finai pH (if adjust.)	Red	H as celved	Final pH (If adjust.)	P Re:	H as celved	Final pH (if adjust.)	pH Rec	as ived	Final pH (if adjust.)	pH Rece		Final pH (if adjust.)
Sample ID	ပ္မ	< 2	Other	돈	> 12	Other	Pin (If a	>9	Other	E 5	< 2	Other	FF	<2	Other	E 5	< 2	Other		<2	Other	Fin (If a	<2	Other	Fin.		Other	Fin F		Other	£ £
601	01	L													`									1.5							
					Γ																										
									,																						
											Γ																				
																							-								

Certificate of Analysis

Final Report

Laboratory Order ID 10090066

Client Name: Iluka Resources, Inc.

Date Received:

Date Issued:

September 02, 2010 September 08, 2010

12472 St. John Church Road Stony Creek, VA 23832

Submitted To: Kevin Rideout

Project Number:

Client Site I.D.: Concord Clean Water Pond

Purchase Order

10-92199

Sample Summary List

Laboratory

Sample ID

Sample ID

Sample Date

Receive Date

10090066-001

Concord Clean Water Pond

09/02/2010

09/02/2010

Ted Sovars

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water _Soil Laboratories, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 10090066

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received: Date Issued:

September 02, 2010

September 08, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord Clean Water Pond

Purchase Order

10-92199

- Analytical Results -

Sample I.D.: Concord Clean Water Pond

Laboratory Sample I.D.: 10090066-001

Date/Time Sampled: 09/02/10 13:09

Date/Time Sampled: 09/02/10	13:09			Analysis	
Parameter	Method	Sample Results Qual	Rep Limi	Date/Time	Analyst
BOD	SM18/5210B	< 2 mg/L	2	09/03/10 9:34	KAA
COD	EPA410.4/R2.0	< 10 mg/L	10	09/03/10 9:45	BMB
Total Organic Carbon (TOC)	SM18/5310C	1.2 mg/L	1	09/07/10 11:57	BHW

Summary of Analytical QC Batches

QC Batch ID

Method

Sample List

QC100903027

EPA410.4/R2.0

10090066-001

QC100908014

SM18/5310C

10090066-001

CHAIN OF CUSTODY

LABORATORIES, INC.						CHAIN OF CUS														PAGE		_OF
CLIENT NAME: Lluka Resources Inc											PROJECT NAME: Concord Clean Wa							later Pond				
CLIENT CONTACT: Kevin Rideout							SITE NAME: Concord															
CLIENT ADDRESS: 12472 St. John Church Road Stry 23885K1								PROJECT NUMBER:														
CLIENT PHONE NUMBER: 434.348.4316										P.O. NUMBER: 10-92199												
CLIENT FAX NUMBER: 434, 246.3039 EMAIL: Kevin, rideous																		:				
is sample for compliance repo	rting?	ES NO) 	•	is samp									YES	_		PWS I					
SAMPLER NAME (PRINT): K		Ride			SAMPL				- ""		1:2	rw.		Lide					Time:	 ASA	P	Day(s)
lave ammonia and TKN samples been ver				sampling?:	YES	NC		T	_	MA						LYSIS						MENTS
CLIENT SAMPLE I.D.	Composite Start Date	Composite Start Time	Grab Date or Composite Stop Date	Grab Time or Composite Stop Time	Number of Containers	Grab	Composite	Field Filtered (Dissolved Metals)	Ground water / Sunace water	Drinking Water	Soil	Solids	Other	Bod	PH 22 9/2/10 PC (H2504)		οU				Quote I	********
1) Concord Clean water Pond			9210	13:09	4	<u> </u>			٧					/	V	V						
2)										⊥_						<u> </u>						
3)																					<u> </u>	
4)							_]		\bot													
5)																	<u> </u>	<u> </u>				
6)												<u> </u>										
7)																		<u> </u>	:			
8)						\perp									<u> </u>		<u> </u>	Ĺ				
9)									\bot								<u> </u>		į			
10)						إ				ł									-			
RELINQUISHED: KLUM Reducent REVINQUISHED:	DATE DATE	14:01	RECEIVED:)			91	ATE ATE) I	4:01	i i	Da 1 Level		ackage	LAB	USE ON	ILY	C	OOLEF	RTEMI	P Le	<u>.O</u> _℃
(A) 4	7/2/10	1635	- PDD	ice X	Roc	h	71;	3h	0	10	7	Level		<u>ت</u> ۵	100	luka	J 1&J 4			9006	6	
RELINQUISHED: DATE / TIME RECEIVED:							G/(12 / 111112					evel IV					DUE. 3 Davs					

Sample Condition Form#: F1302 Rev. #: 1.0 Effective: August 2, 2010 Page 1 of 1

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 35

lluka

10090066

Sample Conditions Checklist Concord Clean Water Pond

Recd: 09/02/10 Opened by: (Initials) Lab ID No.: Data Cooler Opened: YES NO N/A 1. How were samples received? Fed Ex UPS Courier Walk In 2, Were custody seals used? 3. If yes, are custody seals unbroken and intact at the date and time of arrival? Are the custody papers filled out completely and correctly? 4. 5. Do all bottle labels agree with custody papers? Are the samples received on ice? 6. 7. is the temperature blank or representative sample within acceptable limits? (above freezing to 6°C) 8. Are all samples within holding time for requested laboratory tests? 9 Is a sufficient amount of sample provided to perform the tests indicated? 10 Are all samples in proper containers for the analyses requested? 11 Are all samples appropriately preserved for the analyses requested? 12 Are all volatile organic containers free of headspace? COMMENTS

Certificate of Analysis

Final Report

Laboratory Order ID 10090131

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received: Date Issued:

September 08, 2010

September 09, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

Sample Summary List •

Laboratory

Sample ID

Sample ID

Sample Date

Receive Date

10090131-001

Clean Water Pond

09/08/2010

09/08/2010

Ted Soyars

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water _Soil Laboratories, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 10090131

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received: Date Issued:

September 08, 2010

September 09, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

-Analytical Results

Sample I.D.: Clean Water Pond

Date/Time Sampled: 09/08/10 10:00

Parameter

Sample Results

Qual Rep Limi

Laboratory Sample I.D.: 10090131-001

Analysis

Date/Time

Analyst

Fecal Coliform

SM18/9221E

2 mpn/100mL

2 09/08/10 14:00 WBP

Summary of Analytical QC Batches

QC Batch ID

Method

Sample List

QC100909036

SM18/9221E

10090131-001

090920101613

CHAIN OF CUSTODY OF PROJECT NAME: Concord Clean Water CLIENT NAME: Resources Inc Stony Creek, VA CLIENT CONTACT: 312472 St. John Church SITE NAME: CLIENT ADDRESS. PROJECT NUMBER: CLIENT PHONE NUMBER: 434, 348, 4316 P.O. NUMBER: 10-92199 EMAIL: Kevin rideoute iluka.com CLIENT FAX NUMBER: 434. 246. 3039 REGULATORY AUTHORITY: DEQ Is sample for compliance reporting? (IES) NO Is sample from a chlorinated supply? YES MO PWS I.D. #: Lideout SAMPLER NAME (PRINT): 2 Day(s) SAMPLER SIGNATURE: Turn Around Time: (NO) MATRIX Have ammonia and TKN samples been verified to be dechlorinated at the time of sampling?: ANALYSIS / (PRESERVATIVE) COMMENTS Field Filtered (Dissolved Metals) Quote I.D.: Ground Water / Surface Water Storm Water Number of Containers Composite Start Time Composite Start Date Grab Date or Composite Stop Date Grab Time or Composite Stop Time CLIENT SAMPLE I.D. Waste Water / Drinking Water Composite Solids PLEASE NOTE Grab Soil PRESERVATIVE(S) or PUMP RATE (L/min) 9810 Clean Water Pond 10:00 2) 3) 5) 6) 8) 9) 10) QC Data Package LAB USE ONLY COOLER TEMP 4. 1 Lavel ! onice lluka 10090131 Level II Concord Level III DUE: 2 Days - I A PROLITATE OF AN ARM ARM COLOR RACE AND A REC Recd: 09/08/10 Level IV

Sample Condition Form#: F1302 Rev. #: 1.0 Effective: August 2, 2010 Page 1 of 1

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 35

iluka Concord 10090131

DUE: 2 Days Recd: 09/08/10

	Sample Conditions Checklist			Recd: 09/08
Ope	ned by: (Initials) Lab ID No.:	,		
	Date Cooler Opened:	9/5	1/	0
1.	How were samples received? Fed Ex UPS Courier Walk In	YES	NO.	N/A
2.	Were custody seals used?			
3.	If yes, are custody seals unbroken and intact at the date and time of arrival?			
4.	Are the custody papers filled out completely and correctly?	٥		
5.	Do all bottle labels agree with custody papers?			
6.	Are the samples received on ice?			
7.	Is the temperature blank or representative sample within acceptable limits? (above freezing to 6°C)	ď		
8.	Are all samples within holding time for requested laboratory tests?	占		
9	is a sufficient amount of sample provided to perform the tests indicated?			<u> </u>
10	Are all samples in proper containers for the analyses requested?			Ċ
11	Are all samples appropriately preserved for the analyses requested?	囡		
12	Are all volatile organic containers free of headspace?			
	COMMENTS			•
				

Certificate of Analysis

Final Report

Laboratory Order ID 10090131

Client Name:

lluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

September 08, 2010

Date Issued:

September 09, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

Sample Summary List

Laboratory

Sample ID

Sample ID

Sample Date

Receive Date

10090131-001

Clean Water Pond

09/08/2010

09/08/2010

Ted Sovars

Laboratory Manager

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water _Soil Laboratories, Inc.

090920101613

Certificate of Analysis

Final Report

Laboratory Order ID 10090131

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received: Date Issued:

September 08, 2010

September 09, 2010

Laboratory Sample I.D.: 10090131-001

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92199

-Analytical Results

Fecal Coliform

Sample I.D.: Clean Water Pond

Date/Time Sampled: 09/08/10 10:00

Parameter

Method

Sample Results

Analysis

Date/Time Qual Rep Limi

Analyst

SM18/9221E

2 mpn/100mL

09/08/10 14:00 2

WBP

Summary of Analytical QC Batches

QC Batch ID

Method

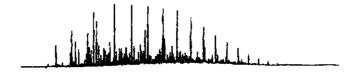
Sample List

QC100909036

SM18/9221E

10090131-001

PAGE OF PROJECT NAME: Concord Clean Water Resources Inc CLIENT NAME: Stony Creek, NA CLIENT CONTACT: カレス4つス SITE NAME: oncod CLIENT ADDRESS. PROJECT NUMBER: CLIENT PHONE NUMBER: 434, 348, 4316 P.O. NUMBER: 10 - 92199 CLIENT FAX NUMBER: 434. 246. 3039 EMAIL: Kevin rideoute iluka.com REGULATORY AUTHORITY: DECO Is sample for compliance reporting? (YES) NO Is sample from a chlorinated supply? YES MO PWS I.D. #: NIA Kideout يل SAMPLER NAME (PRINT): SAMPLER SIGNATURE: Turn Around Time: Day(s) (NO) YES **MATRIX** Have ammonia and TKN samples been verified to be dechlorinated at the time of sampling?: ANALYSIS / (PRESERVATIVE) COMMENTS Field Filtered (Dissolved Metals) Quote I.D.: Surface Water Storm Water Number of Containers Composite Start Time Date Grab Time or Composite Stop Time Composite Start Date CLIENT SAMPLE I.D. Composite Stop Ground Water / Waste Water / Drinking Water Grab Date c Composite Solids Grab PLEASE NOTE Soil PRESERVATIVE(S) or PUMP RATE (Umin) Clean Water Pond 110 10:00 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) QC Data Package LAB USE ONLY RELINQUISHED COOLER TEMP Q. I 18/10 10:44 Onice lluka 10090131 Level II 🔯 Concord Level III 🔲 DUE: 2 Days Recd: 09/08/10 Level IV


CHAIN OF CUSTODY

Sample Condition Form#: F1302 Rev. #: 1.0 Effective: August 2, 2010 Page 1 of 1

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 35 10090131 Concord 2 Days Sample Conditions Checklist 09/08/10 Recd: Opened by: (Initials) Lab ID No .: Date Cooler Opened: YES NO N/A 1. How were samples received? Fed Ex UPS Courier Walk In 2. Were custody seals used? 3. If yes, are custody seals unbroken and intact at the date and time of arrival? Are the custody papers filled out completely and correctly? 4. 5. Do all bottle labels agree with custody papers? Are the samples received on ice? 6. 7. Is the temperature blank or representative sample within acceptable limits? (above freezing to 6°C) 8. Are all samples within holding time for requested laboratory tests? 9 Is a sufficient amount of sample provided to perform the tests indicated? 10 Are all samples in proper containers for the analyses requested? 11 Are all samples appropriately preserved for the analyses requested? 12 Are all volatile organic containers free of headspace? **COMMENTS**

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

8-Jun-10

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Project:

Concord

Date Received:

5-May-10 5-May-10

Date Sampled: Work Order No:

1005019-01

Concord Proc	ess Water					
Final	Reporting	Units of	Method	Date	Tech.	
Result	Limit	Measure	Numbers*	Analyzed	Initials	
]				1	
<0.002	0.002	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
Ĭ			•			
< 0.0014	0.0014	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
<0.001	0.001	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
< 0.003	0.003	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
<0.0036	0.0036	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
< 0.0005	0.0005	mg/L	EPA 200.2/3120B	1-Jun-10	H∨	
< 0.0005	0.0005	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
<0.0002	0.0002	mg/L	3112 B	28-May-10	HV	
<0.00094	0.00094	-	EPA 200.2/3120B	1-Jun-10	HV	
<0.0002	0.0002	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
<0.002	0.002	-	EPA 200.2/3120B	1-Jun-10	HV	
<0.0036	0.0036	mg/L	EPA 200.2/3120B	1-Jun-10	HV	
<0.0016	0.0016	mg/L	3500	5-May-10	NA	
	Final Result <0.002 <0.0014 <0.001 <0.003 <0.0036 <0.0005 <0.0005 <0.0002 <0.00094 <0.0002 <0.0002 <0.0036	Result Limit <0.002	Final Reporting Limit Measure <0.002 0.002 mg/L <0.0014 0.0014 mg/L <0.001 0.001 mg/L <0.003 0.003 mg/L <0.0036 0.0036 mg/L <0.0005 0.0005 mg/L <0.0005 0.0005 mg/L <0.0002 0.0002 mg/L <0.0002 0.0002 mg/L <0.0004 0.00094 mg/L <0.0002 0.0002 mg/L <0.0002 0.0002 mg/L <0.0002 0.0002 mg/L <0.0002 0.0002 mg/L <0.00036 mg/L <0.00036 mg/L <0.00036 mg/L <0.00036 mg/L <0.00036 mg/L	Final Result Limit Measure Numbers* <0.002 0.002 mg/L EPA 200.2/3120B <0.001 <0.001 <0.001 <0.003 <0.003 <0.0036 <0.0005 <0.0005 <0.0005 <0.0002 <0.0002 mg/L EPA 200.2/3120B <0.0005 <	Final Result Reporting Limit Units of Measure Method Numbers* Date Analyzed <0.002	

8-Jun-10

Date Sampled:

5-May-10 1005019-01

Work Order No:

Concord Process Water

Cilent ID:	Concora Proce	388 AASTGL										
Test Description	Final Result			Method Numbers*	Date Analyzed	Tech. Initials						
Hydrogen Sulfide	<0.05	0.05	mg/L	376.1	13-May-10	HV						
Chlorine	0.07	0.01	mg/L	4500CL G	5-May-10	PB						
Cyanide, Free	<0.010	0.010	mg/L	4500CN E	6-May-10	н∨						
Cyanide, Total	<0.010	0.010	mg/L	4500CN E	6-May-10	нν						
Hardness	35.2	0.1	mg/L as CaCo ₃	2340 C	12-May-10	NA						
E Coli	1,299.7	1.0	MPN/100ml	9223 B	5-May-10	мѕ						
Ammonia	0.02	0.01	mg/L	4500NH ₃ F	10-May-10	NA						

Date Sampled: Work Order No:

5-May-10 1005029-01

Client ID:

Outfall 001

Test	Final	Reporting	Units of	Method	Date	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Initials
Uranium	0.00 +/- 0.00	0.67	pCi/L	200.8	19-May-10	SC**
Gross Alpha	1.3 +/- 1.3	2.1	pCi/L	7110 B	19-May-10	sc**
Gross Beta	46.3 +/- 1.7	1.1	pCi∕L	7110 B	19-May-10	sc**
Combined Radium (226/228)	0.20 +/- 0.52	-	pCi/L	calculation	19-May-10	SC**
Tributyltin	<30	30	ng/L	GC/FPD	10-May-10	sc**
Pesticides						
Chlorpyrifos	<0.2	0.2	ug/L	EPA 622	11-May-10	SC**
Diazinon	<1	1	ug/L	EPA 622	11-May-10	SC**
Demeton	<1	1	ug/L	EPA 622	11-May-10	SC**
Guthion	<1	1	ug/L	EPA 622	11-May-10	SC**
Malathion	<1	1	ug/L	EPA 622	11-May-10	SC**
Parathion	<1	1 1	ug/L	EPA 622	11-May-10	SC**

^{**} Analysis sub-contracted.

8-Jun-10

Date Sampled:

5-May-10 1005029-01 Outfall 001

Work Order No: Client ID:

Client ID:	Outfall 001					
Test	Final	Reporting	Units of	Method	Date	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Initials
Pesticides						
Aldrin	<0.05	0.05	ug/L	EPA 608	14-May-10	HV
Chlordane	<0.20	0.20	ug/L	EPA 608	14-May-10	HV
Dieldrin	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
4,4-DDT	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
4,4-DDE	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
4,4-DDD	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Endosulfan sulfate	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Endosulfan I	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Endosulfan II	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Endrin	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Alpha-BHC	<0.05	0.05	ug/L	EPA 608	14-May-10	HV
Beta-BHC	<0.05	0.05	ug/L	EPA 608	14-May-10	HV
Delta-BHC	<0.05	0.05	ug/L	EPA 608	14-May-10	HV
Gamma-BHC (Lindane)	<0.05	0.05	ug/L	EPA 608	14-May-10	HV
Heptachlor	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Kepone	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Methoxychlor	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Mirex	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Endrin Aldehyde	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
Heptachlor Epoxide	<0.10	0.10	ug/L	EPA 608	14-May-10	HV
PCB-1221	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1232	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1242	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1016	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1248	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1254	<1.0	1.0	ug/L	EPA 608	14-May-10	HV
PCB-1260	<1.0	1.0	ug/L	EPA 608	14-May-10	l H∨
Toxaphene	<5.0	5.0	ug/L	EPA 608	14-May-10	HV

8-Jun-10

Units of Measure: ug/L
Method Numbers*: EPA 624
Date Analyzed: 6-May-10
Technician: PB
Date Sampled: 5-May-10
Work Order No: 1005029-01
Client ID: Outfall 001

Client ID:	Outfall 001	
Test	Final	Reporting
Description	Result	Limit
Acrolein	<5.0	5.0
Acrylonitrile	<5.0	5.0
Benzene	<5.0	5.0
Bromoform	<5.0	5.0
Carbon tetrachloride	<5.0	5.0
Chlorobenzene	<5.0	5.0
Chlorodibromomethane	<5.0	5.0
Chloroform	<5.0	5.0
Dibromochloromethane	<5.0	5.0
1,2-Dichloroethane	<5.0	5.0
1,1-Dichloroethene	<5.0	5.0
trans-1,2-Dichloroethene	< 5.0	5.0
1,2-Dichloropropane	<5.0	5.0
1,3-Dichloropropene	<5.0	5.0
Ethylbenzene	<5.0	5.0
Methylene Chloride	<5.0	5.0
Methyl Bromide	<5.0	5.0
1,1,2,2-Tetrachloroethane	<5.0	5.0
Tetrachloroethene	<5.0	5.0
Toluene	<5.0	5.0
1,1,2-Trichloroethane	<5.0	5.0
Trichloroethene	<5.0	5.0
Vinyl Chloride	<5.0	5.0
1,2-Dichlorobenzene	<5.0	5.0
1,3-Dichlorobenzene	<5.0	5.0
1,4-Dichlorobenzene	<5.0	5.0

8-Jun-10

Method Numbers*: EPA 625
Date Analyzed: 13-May-10
Technician: HV
Units of Measure: ug/L
Date Sampled: 5-May-10
Work Order No: 1005029-01
Client ID: Outfall 001

Client ID:	Outfall 001	
Test	Final	Detection
Description	Result	Limit
Acenaphthene	<10	10
Anthracene	<10	10
Benzidine	<10	10
Benzo(a) anthracene	<10	10
Benzo(b) fluoranthene	<10	10
Benzo(k) fluoranthene	<10	10
Benzo(a)pyrene	<10	10
bis-(2-Chioroethyl)ether	<10	10
bis-(2-Chloroisopropyl)ether	<10	10
Butyl benzyl phthalate	<10	10
2-Chloronaphthalene	<10	10
2-Chlorophenol	<10	10
Chrysene	<10	10
Dibenzo(a,h)anthracene	<10	10
Di-n-butyl phthalate	<10	10
3,3-Dichlorobenzidine	<10	10
2,4-Dichlorophenol	<10	10
Diethyl phthalate	<10	10
2,4-Dimethylphenol	<10	10
bis-2-Ethylhexyl Phthalate	<10	10
Dimethyl phthalate	<10	10
2,4-Dinitrophenol	<10	10
2,4-Dinitrotoluene	<10	10
1,2-Diphenylhydrazine	<10	10
Nonyl Phenol	<10	10
2-Methyl-4,6-Dinitrophenol	<10	10

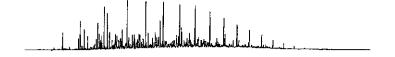
8-Jun-10

Method Numbers*: EPA 625 (con't)
Date Analyzed: 13-May-10
Technician: HV
Units of Measure: ug/L
Date Sampled: 5-May-10
Work Order No: 1005029-01
Client ID: Quifall 001

Client ID:	Outfall 001	
Test	Final	Detection
Description	Result	Limit
Fluoranthene	<10	10
Fluorene	<10	10
Hexachlorobenzene	<10	10
Hexachlorobutadiene	<10	10
Hexachlorocyclopentadiene	<10	10
Hexachloroethane	<10	10
Indeno(1,2,3-cd) pyrene	<10	10
Isophorone	<10	10
Nitrobenzene	<10	10
N-Nitrosodimethylamine	<10	10
N-Nitrosodiphenylamine	<10	10
N-Nitrosodi-n-propylamine	<10	10
Pentachiorophenol	<10	10
Phenol	<10	10
Pyrene	<10	10
1,2,4-Trichlorobenzene	<10	10
2,4,6-Trichlorophenol	<10	10

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Parry L/Bragg
Laboratory Manager


PRIMARY LABORATORIES CHAIN OF CUSTODY

Primary Laboratories 7423 Lee Davis Road Mechanicsville, VA 23111 TEL: (804) 559-9004

TEL: (804) 559-9004 FAX: (804) 559-9306

CLIENT: 71 Ya Too					ANT: _					PROJEC	OT: 4 -41 (1)	+ 1	INVOICE TO:
ATTN: 1 Juny France											PRESERVATIV		
STREET: 124 12 St. J.													P.O.#:
CITY: y (see & , VA										-	Various		SAMPLED BY:
PHONE: / J. Y J/6 FAX: 4	4.	146	3039 P	HONE:				FAX:					SAMPLED BY:
SAMPLE IDENTIFICATION			SAMPL	ING		M	ATRI	X	Primary Lab No.		ANALYSES		COMMENTS
	COMPOSITE	GRAB	DATE	TIME	NO. OF CONTAINERS	WATER	SOIL	ОТНЕВ	(LAB USE ONLY)		Dlease Alfachnt	see 1	to the went to the
English to make full many		-	5/5/10		10	1				1			
RELINQUISHED BY SAMPLER:		DA	(TE:	TIME:			DECE	VED BY:		DATE:	TIME:		
TELINGUISHED DY SAIVIFLEN.	<	5.6650(2000)		11 30	>		NEGEI	VED D1.		5/5/10		TAT: O	1 DAY / / 2 DAYS / /
RELINQUISHED BY:	,	DA	TE:	TIME:		1		VED BY:		DATE:	TIME:	0	3 DAYS / /
Heresalema,	5			12:2	5	1	16	1100	Denno)			8	5 DAYS / /
RELINQUISHED BY:		DA	(TE:	TIME:			RECEI	VED BY	13052	DATE	10 TIME: 1225	0	10 DAYS / / OTHER / /
TEMP:		PR	RESERVATIV	Œ.						11		CHAIN OF CUS	STODY #· ¶ OF]

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

13-Oct-06

Iluka Resources, Inc Attn: Kevin Rideout

12472 St Johns Church Road Stoney Creek, VA 23882

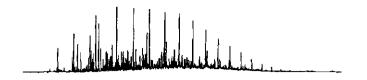
Date Received:

07-Sep-06

Date Sampled:

07-Sep-06

Work Order No:


0609057-01

Client ID:

#1 - #13

Client ID:	#1 - #13						
Test	Final	Reporting	Units of	EPA Test	Date	Time	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Analyzed	Initials
Dissolved Metals		1					
Antimony	<0.100	0.100	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Arsenic	<0.050	0.050	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Cadmium	<0.010	0.010	mg/L	200,2/200.7	11-Sep-06	16:14	AB
Copper	<0.020	0.020	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Lead	<0.050	0.050	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Mercury	<0.0002	0.0002	mg/L	245.1	13-Sep-06	14:47	AB
Nickel	<0.020	0.020	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Selenium	<0.050	0.050	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Silver	<0.020	0.020	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Thallium	0.002	0.002	mg/L	200.2/200.7	11-Sep-06	16:14	AB
Zinc	<0.010	0.010	mg/L	200,2/200.7	11-Sep-06	16:14	AB [
Chromium III	<0.020	0.020	mg/L	200.2/200.7	27-Sep-06	16:40	HV
Chromium VI	<0.005	0.005	mg/L	218.4	08-Sep-06	08:00	NA
Cyanide	<0.010	0.010	mg/L	335.2	12-Sep-06	14:00	MS
Hydrogen Sulfide	<0.05	0.05	mg/L	376.1	27-Sep-06	16:45	РВ
E. Coli	<2	2	MPN/100ml	9221C	08-Sep-06	16:00	мѕ
Ammonia	0.06	0.01	mg/L	350.3	12-Sep-06	08:00	NA
Chlorides	9.1	0.1	mg/L	325.3	11-Sep-06	11:00	NA
Chlorine, Total Residual	<0.010	0.010	mg/L	330.5	14-Sep-06	16:50	HV
Tributyltin	30	30	ng/L	GC/FID	14-Sep-06	16:58	sc*

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

7-May-08

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

30-Apr-08

Date Sampled:

28-Apr-08

Work Order No:

0804240-01

Client ID:

Hickory Outfall 002

CHEIR ID.	mickory Gulian vo.	#				
Test Description	Final Result	Reporting Limit	Units of Measure	Method Numbers*	Date Analyzed	Tech. Initials
TSS	118.7	1.0	mg/L	2540 D	2-May-08 at 13:00	AS
METALS Copper	50	20	ug/L	EPA 200.2/3120B	7-May-08 at 13:32	н∨

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature

Bragg

Laboratory Manager

Results

13-Oct-06

Date Sampled: Work Order No:

07-Sep-06 0609057-01

Client ID:

#1 - #13

Cheff 1D.	#1-#13			, 			
Test	Final	Reporting	Units of	EPA Test	Date	Time	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Analyzed	Initials
Pesticides							
Aldrin	<0.05	0.05	ug/L	608	12-Sep-06	19:33	HV
Chlordane	<0.20	0.20	ug/L	608	12-Sep-06	19:33	HV
Dieldrin	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
4,4-DDT	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
4,4-DDE	<0.10	V.10	ug/L	608	12-Sep-06	19:33	ΗV
4,4-DDD	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Endosulfan sulfate	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Endosulfan I	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Endosulfan II	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Endrin	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Gamma-BHC (Lindane	<0.50	0.50	ug/L	608	12-Sep-06	19:33	HV
Beta-BHC	<0.50	0.50	ug/L	608	12-Sep-06	19:33	HV
Alpha-BHC	<0.50	0.50	ug/L	608	12-Sep-06	19:33	HV
Heptachlor	<0.50	0.50	ug/L	608	12-Sep-06	19:33	ΗV
Kepone	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Methoxychlor	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Mirex	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Endrin Aldehyde	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
Heptachlor Epoxide	<0.10	0.10	ug/L	608	12-Sep-06	19:33	HV
PCB 1016	<1.0	1.0	ug/L	608	12-Sep-06	19:33	ΗV
PCB 1221	<1.0	1.0	ug/L	608	12-Sep-06	19:33	ΗV
PCB 1232	<1.0	1.0	ug/L	608	12-Sep-06	19:33	HV
PCB 1242	<1.0	1.0	ug/L	608	12-Sep-06	19:33	HV
PCB 1248	<1.0	1.0	ug/L	608	12-Sep-06	19:33	HV
PCB 1254	<1.0	1.0	ug/L	608	12-Sep-06	19:33	HV
PCB 1260	<1.0	1.0	ug/L	608	12-Sep-06	19:33	HV
Тохарћеле	<5.0	5.0	ug/L	608	12-Sep-06	19:33	_HV
D-4- OII-	07.000	-					

Date Sampled: Work Order No: 07-Sep-06 0609057-01

Client ID:

#1 - #13

Cheff 1D.	#1 - #10						
Test	Final	Reporting	Units of	EPA Test	Date	Time	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Analyzed	Initials
Organophosphorus Pesticides							
Demeton	<1	1 1	ug/L	622	14-Sep-06	21:05	SC*
Malathion	<1	1 1	ug/L	622	14-Sep-06	21:05	SC*
Chlorpyrifos	<0.2	0.2	ug/L	622	14-Sep-06	21:05	SC*
Parathion	<1	1	ug/L	622	14-Sep-06	21:05	SC*
Guthion	<1	1	ug/L	622	14-Sep-06	21:05	SC*
		2	-		,		

13-Oct-06

Test Method: 624 Date Analyzed: 08-Sep-06 Time Analyzed: 13:17 Technician: ΡВ Date Sampled: 07-Sep-06 Units of Measure: ug/L Work Order No: 0609057-01 Client ID: #1 - #13

		,
Test	Final	Detection
Description	Result	Limit
		1
Acrolein	<5	5
Acrylonitrile	<5	5
Benzene	<5	5
Bromoform	<5	5
Carbon tetrachloride	<5	5
Chlorobenzene	<5	5
Chlorodibromomethane	<5	5
Chloroform	<5	5
Dichloromethane	<5	5
Dichlorobromomethane	<5	5
1,1-Dichloroethylene	<5	5
1,2-Dichloroethane	<5	5
1,2-trans-Dichloroethylene	<5	5
1,2-Dichloropropane	<5	5
1,3-Dichloropropene	<5	5
Ethylbenzene	<5	5
Methylene Bromide	<5	5
1,1,2,2-Tetrachloroethane	<5	5
Tetrachloroethylene	<5	5
Toluene	<5	5
Trichloroethylene	<5	5
1,1,2-Trichloroethane	<5	5
Vinyl Chloride	<5	5

13-Oct-06

Test Method: 625 Date Analyzed: 12-Sep-06 Time Analyzed: 15:04 Technician: ΗV Date Sampled: 07-Sep-06 Units of Measure: ug/L Work Order No: 0609057-01 Client ID: #1 - #13

Client ID:	#1 - #13	
Test	Final	Detection
Description	Result	_Limit_
Acenaphthene	<10	10
Anthracene	<10	10
Benzidine	<10	10
Benzo(a) anthracene	<10	10
Benzo(b) fluoranthene	<10	10
Benzo(k) fluoranthene	<10	10
Benzo(a)pyrene	<10	10
bis-(2-Chloroethyl)ether	<10	10
bis-(2-Chloroisopropyl)ether	<10	10
Butyl benzyl phthalate	<10	10
2-Chloronaphthalene	<10	10
2-Chlorophenol	<10	10
Chrysene	<10	10
Dibenzo(a,h)anthracene	<10	20
Di-n-butyl phthalate	<10	10
1,2-Dichlorobenzene	<10	10
1,3-Dichlorobenzene	<10	10
1,4-Dichlorobenzene	<10	10
3,3-Dichlorobenzidine	<10	20
2,4-Dichlorophenol	<10	10
Diethyl phthalate	<10	10
2,4-Dimethylphenol	<10	10
Di-2-Ethylhexyl Phthalate	<10	10
Dimethyl phthalate	<10	10
2,4-Dinitrophenol	<10	10
2,4-Dinitrotoluene	<10	10
1,2-Diphenylhydrazine	<10	10

13-Oct-06

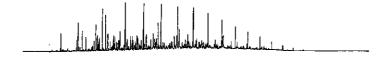
Test Method: 625 (Con't) Date Analyzed: 12-Sep-06 15:04 Time Analyzed: Technician: H۷ Date Sampled: 07-Sep-06 Units of Measure: ug/L 0609057-01 Work Order No: Client ID: #1 - #13

Ollotte (D.	<i>"</i>	
Test	Final	Detection
Description	Result	Limit
Fluoranthene	<10	10
Fluorene	<10	10
Hexachlorobenzene	<10	10
Hexachlorobutadiene	<10	10
Hexachlorocyclopentadiene	<10	10
Hexachioroethane	<10	10
Indeno(1,2,3-cd) pyrene	<20	20
Isophorone	<10	10
2-Methyl-4,6-Dinitrophenol	<50	50
Nitrobenzene	<10	10
N-Nitrosodimethylamine	<10	10
N-Nitrosodiphenylamine	<10	10
N-Nitrosodi-n-propylamine	<10	10
Pentachlorophenol	<10	10
Phenol	<10	10
Pyrene	<10	10
1,2,4-Trichlorobenzene	<10	10
2,4,6-Trichlorophenol	<10	10

Date Sampled: Work Order No: 07-Sep-06 0609057-01

Client ID:

#1 - #13


Test	Final	Reporting	Units of	EPA Test	Date	Time	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Analyzed	Initials
Gross Alpha	0.0 <u>+</u> 0.4	0.8	pci/l	900.0	25-Sep-06	08:00	SC*
Gross Beta	2.5 <u>+</u> 1.0	2.1	pci/l	900.0	25-Sep-06	08:00	SC*
Strontium-90	0.4 <u>+</u> 0.4	1.4	pci/l	905.0	03-Oct-06	11:00	SC*
Tritium	20.3 <u>+</u> 88.5	147.2	pci/l	906.0	06-Oct-06	[-	SC*

Signature:

Parry L/Bragg

Laboratory Manager

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

22-Nov-06

ILUKA Resource, Inc. Attn: Kevin Rideout 12472 St. John Church Stony Creek, Virginia 23882

Date Received:

17-Nov-06

Date Sampled:

11/16/2006 - 11/17/2006

Work Order No:

0611151-01

Client ID:

Concord Outfall 001 #3

Test	Final	Reporting	Units of	EPA Test	Date	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Initials
Ammonia	0.04	0.1	mg/L	350.3	22-Nov-06	NA
					at 8:00	
					1	

Date Sampled:

11/16/2006 - 11/17/2006

Work Order No:

0611151-02

Client ID:

Concord Outfall 001 #2

		• - •				
Test	Final	Reporting	Units of	EPA Test	Date	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Initials
Sulfide	0.20	0.05	mg/L	376.1	17-Nov-06	NA
					at 15:30	
		l				

Date Sampled:

11/16/2006 - 11/17/2006

Work Order No:

0611151-03

Client ID:

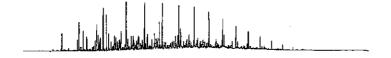
Concord Outfall 001 #1

whom to						
Test	Final	Reporting	Units of	EPA Test	Date	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Initials
Chloride	8.1	0.1	mg/L	325.3	21-Nov-06	NA
					at 12:00	

Signature:

Parry L. Bragg

Laboratory Manager


Date: //- 22 -06

PRIMARY LABORATORIES CHAIN OF CUSTODY

Primary Laboratories 7423 Lee Davis Road Mechanicsville, VA 23111 TEL: (804) 559-9004 FAX: (804) 559-9306

CLIENT: Iluka Resource	29	I,	1 <u>(.</u> 0	ONSULTA	ANT: _						PROJ	ECT: دم ا	ria		00	to	RIO			INVOICE TO:
STREET: 12472 St. Joh	#		<i>§</i>	TJN:							Cun							fall	1	
STREET: 12472 St. Joh	n (Cho	irch's	TREET: _				_					$\overline{\top}$			T				P0.#: 06-78398
CITY: Stony Creek, VI							-										1			
PHONE: 434.348.4316FAX: 43	34.6	746	. 3039 ^P	HONE:				FAX	: :			\perp								SAMPLED BY: TAIOKR
SAMPLE IDENTIFICATION			SAMPL	ING]	М	ATRI)	(Primajiy, Lab I	Vo.				À۱	IALYS	ES				COMMENTS
Concord Outfall 001 #3 Concord Outfall 001 #2 Concord Outfall 001 #1	C ← C COMPOSITE		11 16-17 04 11 16-17 04	24118	_	C C WATER	SOIL	ОТНЕВ	(LAB USE ON		< Ammonia.	V Sulfide	Chloride							
RELINQUISHED BY SAMPLER:		DĄT		TIME:			RECEI	VED	<u> </u> B <i>Yp [[</i>		I L DAȚE:	,	Tin	<u> </u> 1E:		1	l Tàt:			04 UDC / /
Kein Kideset	{(ادا		>800	>		<u> </u>	1	Hen	11)	/17/0	6		<u> </u>	>_	_	IAI:	m m		24 HRS / / 48 HRS / /
RELINQUISHED BY:	,	DAT	ΓE: <	TIME:			REĆEľ	VED	BY:	, [DATÉ:		TIN	ΛE:				m		72 HRS / /
RELINQUISHED BY:		DĄ	 ΓΕ: ,	TIME:			RECEI	VED	BY LAB:		DATE:		TIN			\dashv		m		5 DAYS (1 / 28/ 10 DAYS / /
- Affer		1//	706	1310	>	0	علط	منٰد	Steneman	\ //	/17/0	6		310	ľ			m_		OTHER / /
FEMP:		PR	ÉSERVATIV	/E							,				-	7	אוא טי	ר ער ער ער <i>יי</i>	He	TODY #: OF
									,							ı۷	лαш	UFU	υS	1001 # UF

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

05-Jun-06

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

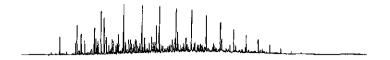
31-May-06

Date Sampled:

31-May-06

Work Order No:

0605196-01


Client ID:

Concord Sample 1

OHOTH ID.	OULIOUI G Gall	Construction Campie									
Test .	Final	Reporting	Units of	EPA Test	Date	Tech.					
Description	Result	Limit	Measure	Method	Analyzed	Initials					
TSS	7.6	1.0	mg/L	160.2	1-Jun-06 at 14:00	MS					
		,	1			i					

Laboratory Manager

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

31-Aug-06

Date:

ILUKA Resource, Inc. Attn: Kevin Rideout 12472 St. John Church Stony Creek, Virginia 23882

Project:

Concord Outfall 001

Date Received:

24-Aug-06

Date Sampled:

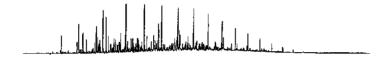
24-Aug-06

Work Order No:

0608179-01

Client ID:

Concord Outfall 001


Test	Final	Reporting	Units of	EPA Test	Date	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Initials
TSS	11.2	1.0	mg/L	160.2	29-Aug-06 at 16:00	MS

Signature:

Parry L. Bragg / / Laboratory Manager

Laboratery Marrager

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

13-Oct-06

ILUKA Resource, Inc. Atln: Kevin Rideout 12472 St. John Church Stony Creek, Virginia 23882

Project:

4th Qtr Concord Outfall 001

Date Received:

10-Oct-06

Date Sampled:

09-Oct-06

Work Order No:

0610076-01

Client ID:

Concord Outfall 001

Test	Final	Reporting	Units of	EPA Test	Date	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Initials
TSS	6.4	1.0	mg/L	160.2	12-Oct-06 at 15:00	MS

Signature:

Padry(L/. Bragg

Laboratory Manager

Date: 10/(3/06

SCHNEIDER LABORATORIES

1;

INCORPORATED

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (Fax) 804-359-1475

Excellence in Service and Technology AIHA/ELLAP 100527, NVLAP 101150-D, NYELAP/NELAC 11413, SC 93003

I ABORATORY ANALYSIS REPORT

Account: 2479-07-5

ILUKA Resources, Inc.

Date/Time Collected: 03/1/2007 Date/Time Received: 03/1/2007

2:10 PM

Client: Address:

12472 St. Johns Church Road

Date Reported: 03/7/2007

Stony Creek, VA 23882-8016

Receipt Temp., °C:

Concord VPDES

Project Name:

Sample Matrix: AQUEOUS

Project No.:

Job Location: Concord Outfall 001

> 07-79375 P.O.#:

Sample

SLI Sample No.: 29236556

Description: Concord 001

Client Sample No.: 001

Analyte

Analysis Result

Quantitation Limit

Dilution Factor

Analysis Date/Time Analyst

Total Suspended Solids by SM 2540D

Total Suspended Solids

1000

mg/L

Units

THN

Reviewed By: Bernard H. How

All samples for organics testing should be shipped in cool conditions, 1 to 6°C. Quality Control Data available upon request. *Data precision justifies 2 significant figures. Sample concentrations below the Quantitation Limit are noted as BQL (Below Quantitation Limit) or ND (None Detected) or with a "less than" (<) sign. Values designated with a "B" indicate presence of the analyte in the laboratory blank at a concentration above the Quantitation Limit. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Soil results are reported on a dry weight basis. Results relate only to samples as received by the laboratory. Unusual sample conditions, if any, are described. All testing is done in strict accordance with SLI, protocol. Visit www.slabinc.com for current certifications.

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

01-Dec-06

ILUKA Resource, Inc. Attn: Kevin Rideout 12472 St. John Church Stony Creek, Virginia 23882

Date Received:

28-Nov-06

Date Sampled:

27-Nov-06

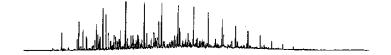
Work Order No:

0611227-01

Client ID:

Outfall 001

Quitian by i		_			
Final	Reporting	Units of	EPA Test	Date	Tech.
Result	Limit	Measure	Method	Analyzed	Initials
10.8	1.0	mg/L	160.2	29-Nov-06 at 16:30	MS
	Final Result	Final Reporting Result Limit	Final Reporting Units of Result Limit Measure	Final Reporting Units of EPA Test Result Limit Measure Method	Final Reporting Units of EPA Test Date Result Limit Measure Method Analyzed 10.8 1.0 mg/L 160.2 29-Nov-06


Cianatura

Parry L. Bragg Laboratory Manager

Date:

12-1-06

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

4-May-07

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

1-May-07

Date Sampled:

30-Apr-07

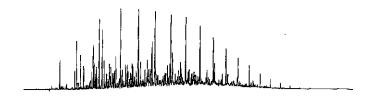
Work Order No:

0705001-01

Client ID:

Concord 001

OROTIC ID.	Collecta co	•					
Test	Final	Reporting	Units of	EPA Test	Date	Time	Tech.
Description	Result	Limit	Measure	Method	Analyzed	Analyzed	Initials
TSS	8.8	1.0	mg/L	160.2	2-May-07	09:30	AS


Signature:

P**a**rry L. Bragg

Laboratory Manager

Date:

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

8-Feb-08

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

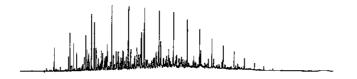
6-Feb-08

Date Sampled:

2-Feb-08

Work Order No: 0802036-01 Client ID:

Concord Outfall 001


ORGIN ID.	Concord Odna	111 001					
Test	Final	Reporting	Units of	Standard	Date	Time	Tech.
Description	Result	<u>Limit</u>	Measure	Methods (18)	Analyzed	Analyzed	Initials
TSS	<1.0	1.0	mg/L	2540 D	7-Feb-08	13:00	AS

Note: Sample received in laboratory on ice.

Signature:

Laboratory Manager

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

5-May-08

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

30-Apr-08

Date Sampled:

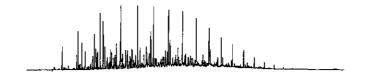
29-Apr-08

Work Order No:

0804242-01 Concord Outfall 001

••							
Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	initials
TSS	12.8	1.0	mg/L	2540 D	2-May-08	13:00	AS

* All methods are Standard Methods 18th Edition unless otherwise noted.


Signature:

Party L. Bragg

Laboratory Manager

Date: 3

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

28-Apr-08

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Project:

Concord

Date Received:

22-Apr-08

Date Sampled:

21-Apr-08

Work Order No:

0804176-01

Client ID:

Outfall 001

OHOIK ID.	outium out						
Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	Initials
TSS	9.5	1.0	mg/L	2540 D	25-Apr-08	12:00	AS

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature:

Parry L. Bragg

Laboratory Manager

SCHNEIDER LABORATORIES

INCORPORATED

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (Fax) 804-359-1475

Excellence in Service and Technology AIHA/ELLAP 100527, NVLAP 101150-0, NYELAP/NELAC 11413, SC 93003

LABORATORY ANALYSIS REPORT

Account:

2479-08-14

Date/Time Collected: 09/4/2008

Client: ILUKA Resources, Inc.

Date/Time Received: 09/4/2008

Address:

12472 St. Johns Church Road

Date Reported: 09/9/2008

5:31 PM

Stony Creek, VA 23882-8016

Analysis

Result

Receipt Temp., °C:

Project Name:

Concord Outfall 001

Sample Matrix: AQUEOUS

Project No.:

Job Location: Concord P.O.#:

08-84261

SLI Sample No.: 29881414

Sample

Client Sample No.: 1

Description:

Analyte

Quantitation Limit

Units Dilution Factor

Analysis Date/Time Analyst

Total Suspended Solids based on SM 2540D using SLI O11

Total Suspended Solids

mg/L

09/9/2008 11:44:00 AM

Reviewed By: Bernard H. Howard, Supervisor

All samples for organics testing should be shipped in cool conditions, 1 to 6°C. Quality Control Data available upon request, *Data precision justifies 2 significant figures. Sample concentrations below the Quantitation Limit are noted as BQL (Below Quantitation Limit) or ND (None Detected) or with a "less than" (<) sign. Values designated with a "B" indicate presence of the analyte in the laboratory blank at a concentration above the Quantitation Limit. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Soil results are reported on a dry weight basis. Results relate only to samples as received by the laboratory. Unusual sample conditions, if any, are described. All testing is done in strict accordance with SLI, protocol. Visit www.slabinc.com for current certifications.

SCHNEIDER LABORATORIES

INCORPORATED

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (Fax) 804-359-1475

Excellence in Service and Technology AIHA/ELLAP 100527. NVLAP 101150-0, NYELAP/NELAC 11413, SC 93063

LABORATORY ANALYSIS REPORT

Account: 2479-08-11

Date/Time Collected: 08/28/2008

Client: ILUKA Resources, Inc.

Date/Time Received: 08/29/2008

10:30 AM

Address:

12472 St. Johns Church Road

Date Reported: 09/4/2008

P.O.#:

Stony Creek, VA 23882-8016 Concord Outfall 001

Receipt Temp., *C: 2

Project Name:

Project No.:

Job Location: Concord

Sample Matrix: AQUEOUS

08-84261

SLI Sample No.: 29873830

Sample Description:

Analyte

Units

Client Sample No.: 1 Dilution **Factor**

Analysis Date/Time

Analyst

Total Suspended Solids based on SM 2540D using SLI O11 Total Suspended Solids

BQL

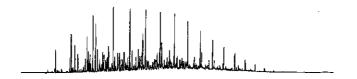
Analysis

Result

Quantitation

Limit

mg/L


09/2/2008 12:30:00 PM

KD

Reviewed By: Bernard H. Howard, Supervisor

All samples for organics testing should be shipped in cool conditions, 1 to 6°C. Quality Control Data available upon request, *Data precision justifies 2 significant figures. Sample concentrations below the Quantitation Limit are noted as BQL (Below Quantitation Limit) or ND (None Detected) or with a "less than" (<) sign. Values designated with a "B" indicate presence of the analyte in the laboratory blank at a concentration above the Quantitation Limit. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "Mi" indicates matrix interference. Soil results are reported on a dry weight basis, Results relate only to samples as received by the laboratory. Unusual sample conditions, if any, are described. All testing is done in strict accordance with SLI, protocol. Visit www.slabinc.com for current certifications.

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

16-Jul-08

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

10-Jul-08

Date Sampled:

9-Jul-08

Work Order No:

0807060-01

Client ID:

Concord Outfall 001

Onone io.	4011001 a 0 a 110						
Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	_Numbers*	Analyzed	Analyzed	Initials
TSS	7.9	1.0	mg/L	2540 D	15-Jul-08	13:45	AS

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature:

Pény L. Bragg

Laboratory Manager

Date: 7/16/08

JEIDER I ABORATORIE

INCORPORATED

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (Fax) 804-359-1475

Excellence in Service and Technology AIHA/ELLAP 100527, NVLAP 101150-0, NYELAP/NELAC 11413, SC 93003

LABORATORY ANALYSIS REPORT

Account: 2479-08-30

ILUKA Resources, Inc.

Date/Time Collected: 12/13/2008

Client:

Date/Time Received:

12/16/2008. 8:20 AM

Address:

12472 St. Johns Church Road Stony Creek, VA 23882-8016

Date Reported: 12/17/2008

Receipt Temp., °C:

Project Name:

Concord Outfall 001

Sample Matrix: AQUEOUS

Project No.:

Job Location: Concord

P.O.#:

08-84261

SLI Sample No.: 30007076

Sample

Client Sample No.: Concord 001

Description:

Quantitation

Dilution

Analysis

Analyte

Analysis

Analyst

Result

Limit

Factor

Date/Time

Total Suspended Solids based on SM 2540D using SLI O11

Total Suspended Solids

16

5

mg/L:

Units

12/17/2008 3;20:00 PM

Reviewed By: Andrew P. Sulak, Organics Mgr.

All samples for organics testing should be shipped in cool conditions, 1 to 6°C. Quality Control Data available upon request. *Data precision justifies 2 significant figures. Sample concentrations below the Quantitation Limit are noted as BQL (Below Quantitation Limit) or ND (None Detected) or with a "less than" (<) sign. Values designated with a "B" indicate presence of the analyte in the laboratory blank at a concentration above the Quantitation Limit. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Soil results are reported on a dry weight basis. Results relate only to samples as received by the laboratory. Unusual sample conditions, if any, are described. All testing is done in strict accordance with SLI, protocol. Visit www.slabinc.com for current certifications,

SCHNEIDER LABORATORIE

INCORPORATED

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (Fax) 804-359-1475

Excellence in Service and Technology AIHA/ELLAP 100527, NVLAP 101150-0, NYELAP/NELAC 11413, SC 93003

LABORATORY ANALYSIS REPORT

Account:

2479-08-17

Date/Time Collected: 10/14/2008

Client:

ILUKA Resources, Inc.

Date/Time Received: 10/15/2008

5:00 PM

Address:

12472 St. Johns Church Road

Date Reported: 10/21/2008

Stony Creek, VA 23882-8016

Receipt Temp., °C:

Project Name:

Concord Outfall 001

Sample Matrix: AQUEOUS

Project No.:

Job Location:

P.O.#:

08-84261

SLI Sample No.: 29929980

Sample Description:

Client Sample No.: Outfall 001

Analysis

Quantitation

Units Dilution

Analysis

Analyst

Analyte

Result

Limit

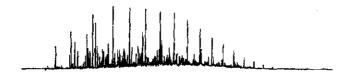
Factor

Date/Time

Total Suspended Solids based on SM 2540D using SLI O11

Total Suspended Solids

BQL


mg/L

10/21/2008 9:20:00 AM

Reviewed By: Andrew P. Sulak, Organics Mgr.

All samples for organics testing should be shipped in cool conditions, 1 to 6°C. Quality Control Data available upon request. *Data precision justifies 2 significant figures. Sample concentrations below the Quantitation Limit are noted as BQL (Below Quantitation Limit) or ND (None Detected) or with a "less than" (<) sign. Values designated with a "B" indicate presence of the analyte in the laboratory blank at a concentration above the Quantitation Limit. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "Mi" indicates matrix interference. Soil results are reported on a dry weight basis. Results relate only to samples as received by the laboratory. Unusual sample conditions, if any, are described. All testing is done in strict accordance with SLI, protocol. Visit www.slabinc.com for current certifications.

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

16-Jul-08

ILUKA Resource, Inc. Attn: Kevin Rideout 12472 St. John Church Road Stony Creek, Virginia 23882

Date Received:

10-Jul-08

Date Sampled:

9-Jul-08 0807060-01

Work Order No: Client ID:

Concord Outfall 001

Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	Initials
TSS	7.9	1.0	mg/L	2540 D	15-Jul-08	13:45	AS

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature:

Perry L. Bragg

Laboratory Manager

Date:

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09020157

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

February 11, 2009

Date Issued:

February 16, 2009

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

09-88650

Sample I.D.: Concord Outfall 001

Date/Time Sampled: 02/10/09

Laboratory Sample I.D.: 09020157-001

Parameter

Method

Sample Results

Analysis Date/Time Rep Limi

TSS

SM18/2540D

26.2 mg/L

1.0 02/12/09 15:42 Analyst WBP

Ted Soyars

Laboratory Manager

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09060454

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

June 24, 2009

Date Issued:

June 26, 2009

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

09-88650

Sample I.D.: Concord 001

Fulchase Order

Laboratory Sample I.D.:

09060454-001

Date/Time Sampled: 06/24/09 09:30

Analysis

Parameter

Method

Sample Results

Rep Limi Date/Time

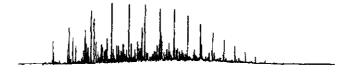
Analyst

TSS

SM18/2540D

10.7 mg/L

0


06/25/09 15:00

WBP

Ted Soyars

Laboratory Manager

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

15-Dec-09

ILUKA Resource, Inc. Attn: Kevin Rideout 12472 St. John Church Road

Stony Creek, Virginia 23882

Date Received:

10-Dec-09

Date Sampled:

9-Dec-09

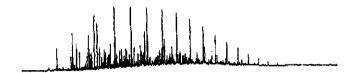
Work Order No:

912103

Client ID:

Concord Outfall 001

Onone io.	Concold Candil	VU !					
Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	Initials
TSS	7.9	1.0	mg/L	2540 D	14-Dec-09	14:30	AS


^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature:

aboratory Manager

Date:

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Pax (804) 559-9306

ANALYTICAL LABORATORY REPORT

23-Nov-09

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Project:

Client ID:

Concord 001

Date Received:

16-Nov-09

Date Sampled:

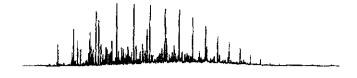
12-Nov-09 0911160-01

Work Order No:

Concord 001

Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	Initials
TSS	4.1	1.0	mg/L	2540 D	19-Nov-09	8:00	AS

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.


Signature:

Patry L. Bragg :

Laboratory Manager

Date: 11/23/39

7423 Lee Davis Road • Mechanicsville, VA 23111 • Telephone (804) 559-9004 • Fax (804) 559-9306

ANALYTICAL LABORATORY REPORT

13-Oct-09

ILUKA Resource, Inc. Attn: Kevin Rideout

12472 St. John Church Road Stony Creek, Virginia 23882

Project:

Concord

Date Received:

7-Oct-09

Date Sampled:

4-Oct-09

Work Order No:

0910061-01

Client ID:

Outfall 001

Test	Final	Reporting	Units of	Method	Date	Time	Tech.
Description	Result	Limit	Measure	Numbers*	Analyzed	Analyzed	Initials
TSS	12.8	1.0	mg/L	2540 D	10-Oct-09	12:30	AS

^{*} All methods are Standard Methods 18th Edition unless otherwise noted.

Signature^{*}

Parfy L. Bragg

Laboratory Manager

Date: 10/13/

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 09020157

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

February 11, 2009

Date Issued:

February 16, 2009

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

09-88650

Sample I.D.: Concord Outfall 001

09020157-001

Date/Time Sampled: 02/10/09

Laboratory Sample I.D.:

Analysis

Parameter

Method

Sample Results

Date/Time Rep Limi

TSS

SM18/2540D

26.2 mg/L

02/12/09 15:42 1.0

Analyst WBP

Ted Soyars

Laboratory Manager

2109A North Hamilton Street • Richmond, Virginia 23230 • Tel: (804) 358-8295 Fax: (804) 358-8297

Certificate of Analysis

Final Report

Laboratory Order ID 10010393

Client Name:

Iluka Resources, Inc.

12472 St. John Church Road

Stony Creek, VA 23832

Date Received:

January 25, 2010

Date Issued:

January 27, 2010

Submitted To: Kevin Rideout

Project Number:

NA

Client Site I.D.: Concord

Purchase Order

10-92202

Sample I.D.: Concord Outfall 001

Laboratory Sample I.D.: 10010393-001

Date/Time Sampled: 01/25/10 11:00

Method

Sample Results

Analysis Rep Limi

Parameter

Date/Time

Analyst

TSS

SM18/2540D

23.8 mg/L

1.0

01/26/10 16:21

LMT

Ted Sovars

Laboratory Manager

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a dry weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Air Water & Soil Laboratories, Inc.